Skip to main content
Log in

Fire-diffuse-fire calcium waves in confined intracellular spaces

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The propagation of fire-diffuse-fire Ca2+ waves through a three-dimensional rectangular domain is considered. The domain is infinite in extent in the direction of propagation but with lateral barriers to diffusion which contain Ca2+ pumps. The Ca2+ concentration profile due to the firing of a release site (spark) is derived analytically based on the Green’s function for the diffusion equation on the domain. The existence, stability and speed of these waves is shown to be critically dependent on the dimensions of the domain and the Ca2+ pump rate. It is shown that the smaller the dimensions of the region, the lower the Ca2+ release flux required for wave propagation, and the higher the wave speed. Also it is shown that the region may support multiple Ca2+ wavefronts of varying wave speed. This model is relevant to subsarcolemmal waves in atrial myocytes (Kockskämper et al., 2001, Biophys. J. 81, 2590–2605), and the results may be of importance in understanding the roles of the endoplasmic/sarcoplasmic reticulum, surface membranes and Ca2+ pumps in the intracellular Ca2+ dynamics of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bezprozvanny, I., J. Watras and B. E. Ehrlich (1991). Bell-shaped calcium-response curves of Ins(1,4,5)P3-and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351, 751–754.

    Article  Google Scholar 

  • Blatter, L. A., J. Huser and E. Rios (1997). Sarcoplasmic reticulum Ca2+ release flux underlying Ca2+ sparks in cardiac muscle. Proc. Natl Acad. Sci. USA 94, 4176–4181.

    Article  Google Scholar 

  • Bugrim, A. E., A. M. Zhabotinsky and I. R. Epstein (1997). Calcium waves in a model with a random spatially discrete distribution of Ca2+ release sites. Biophys. J. 73, 2897–2906.

    Google Scholar 

  • Callamaras, N., J. S. Marchant, X. P. Sun and I. Parker (1998). Activation and co-ordination of InsP3-mediated elementary Ca2+ events during global Ca2+ signals in Xenopus oocytes. J. Physiol. 509, 81–91.

    Article  Google Scholar 

  • Coombes, S. (2001). The effect of ion pumps on the speed of travelling waves in the fire-diffuse-fire model of Ca2+ release. Bull. Math. Biol. 63, 1–20.

    Article  MathSciNet  Google Scholar 

  • Cordeiro, J. M., K. W. Spitzer, W. R. Giles, P. E. Ershler, M. B. Cannell and J. H. Bridge (2001). Location of the initiation site of calcium transients and sparks in rabbit heart Purkinje cells. J. Physiol. 531, 301–314.

    Article  Google Scholar 

  • Dawson, S. P., J. Keizer and J. E. Pearson (1999). Fire-diffuse-fire model of dynamics of intracellular calcium waves. Proc. Natl Acad. Sci. USA 96, 6060–6063.

    Article  Google Scholar 

  • Falcke, M., L Tsimring and H. Levine (2000). Stochastic spreading of intracellular Ca2+ release. Phys. Rev. E 62, 2636–2643.

    Article  Google Scholar 

  • Fontanilla, R. A. and R. Nuccitelli (1998). Characterization of the sperm-induced calcium wave in Xenopus eggs using confocal microscopy. Biophys. J. 75, 2079–2087.

    Google Scholar 

  • Gyorke, S. and M. Fill (1993). Ryanodine receptor adaptation: control mechanism of Ca(2+)-induced Ca2+ release in heart. Science 260, 807–809.

    Google Scholar 

  • Hüser, J. and L. A. Blatter (1997). Elementary events of agonist-induced Ca2+ release in vascular endothelial cells. Am. J. Physiol. 273, C1775–C1782.

    Google Scholar 

  • Izu, L. T., W. G. Wier and C. W. Balke (2001). Evolution of cardiac calcium waves from stochastic calcium sparks. Biophys. J. 80, 103–120.

    Google Scholar 

  • Jaggar, J. H., V. A. Porter, W. J. Lederer and M. T. Nelson (2000). Calcium sparks in smooth muscle. Am. J. Physiol. 278, C235–C256.

    Google Scholar 

  • Kargacin, G. J. (1994). Calcium signaling in restricted diffusion spaces. Biophys. J. 67, 262–272.

    Google Scholar 

  • Kargacin, G. and F. S. Fay (1991). Ca2+ movement in smooth muscle cells studied with one-and two-dimensional diffusion models. Biophys. J. 60, 1088–1100.

    Google Scholar 

  • Keizer, J., G. D. Smith, S. Ponce-Dawson and J. E. Pearson (1998). Saltatory propagation of Ca2+ waves by Ca2+ sparks. Biophys. J. 75, 595–600.

    Google Scholar 

  • Keizer, J. and G. D. Smith (1998). Spark-to-wave transition: saltatory transmission of calcium waves in cardiac myocytes. Biophys. Chem. 72, 87–100.

    Article  Google Scholar 

  • Kockskämper, J., K. A. Sheehan, D. J. Bare, S. L. Lipsius, G. A. Mignery and L. A. Blatter (2001). Activation and propagation of Ca(2+) release during excitation-contraction coupling in atrial myocytes. Biophys. J. 81, 2590–2605.

    Google Scholar 

  • Kraut, E. A. (1967). Fundamentals of Mathematical Physics, New York: McGraw-Hill.

    MATH  Google Scholar 

  • Kupferman, R., P. P. Mitra, P. C. Hohenberg and S. S. Wang (1997). Analytical calculation of intracellular calcium wave characteristics. Biophys. J. 72, 2430–2444.

    Google Scholar 

  • Langer, G. A. and A. Peskoff (1996). Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell. Biophys. J. 70, 1169–1182.

    Google Scholar 

  • Lipp, P., M. Egger and E. Niggli (2002). Spatial characteristics of sarcoplasmic reticulum Ca2+ release events triggered by L-type Ca2+ current and Na+ current in guinea-pig cardiac myocytes. J. Physiol. 542, 383–393.

    Article  Google Scholar 

  • Niggli, E. (1999). Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks. Annu. Rev. Physiol. 61, 311–335.

    Article  Google Scholar 

  • Pabelick, C. M., Y. S. Prakash, M. S. Kannan and G. C. Sieck (1999). Spatial and temporal aspects of calcium sparks in porcine tracheal smooth muscle cells. Am. J. Physiol. 277, L1018–L1025.

    Google Scholar 

  • Parker, I. and Y. Yao (1991). Regenerative release of calcium from functionally discrete subcellular stores by inositol trisphosphate. Proc. R. Soc. Lond. B 246, 269–274.

    Google Scholar 

  • Pearson, J. E. and S. Ponce-Dawson (1998). Crisis on skid row. Physica A 257, 141–148.

    Article  Google Scholar 

  • Perez, G. J., A. D. Bonev, J. B. Patlak and M. T. Nelson (1999). Functional coupling of Ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries. J. Gen. Physiol. 113, 229–238.

    Article  Google Scholar 

  • Peskoff, A., J. A. Post and G. A. Langer (1992). Sarcolemmal calcium-binding sites in heart: II. Mathematical model for diffusion of calcium released from the sarcoplasmic reticulum into the diadic region. J. Membr. Biol. 129, 59–69.

    Google Scholar 

  • Sitsapesan, R. and A. J. Williams (2000). Do inactivation mechanisms rather than adaptation hold the key to understanding Ryanodine receptor channel gating? J. Gen. Physiol. 116, 867–872.

    Article  Google Scholar 

  • Strauss, W. A. (1992). Partial Differential Equations: an Introduction, New York: John Wiley and Sons.

    MATH  Google Scholar 

  • Subramanian, S., S. Viatchenko-Karpinski, V. Lukyanenko, S. Gyorke and T. F. Wiesner (2001). Underlying mechanisms of symmetric calcium wave propagation in rat ventricular myocytes. Biophys. J. 80, 1–11.

    Google Scholar 

  • Thomas, D., M. J. Mason and M. P. Mahaut-Smith (2001). Depolarisation-evoked Ca2+ waves in the non-excitable rat megakaryocyte. J. Physiol. 537, 371–378.

    Article  Google Scholar 

  • Wagner, J. and J. Keizer (1994). Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys. J. 67, 447–456.

    Article  Google Scholar 

  • Wussling, M. H. P. and H. Salz (1996). Nonlinear propagation of spherical calcium waves in rat cardiac myocytes. Biophys. J. 70, 1144–1153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemon, G. Fire-diffuse-fire calcium waves in confined intracellular spaces. Bull. Math. Biol. 66, 65–90 (2004). https://doi.org/10.1016/S0092-8240(03)00074-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(03)00074-0

Keywords

Navigation