Skip to main content
Log in

An inverse algorithm for a mathematical model of an avian urine concentrating mechanism

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A nonlinear optimization technique, in conjunction with a single-nephron, single-solute mathematical model of the quail urine concentrating mechanism, was used to estimate parameter sets that optimize a measure of concentrating mechanism efficiency, viz., the ratio of the free-water absorption rate to the total NaCl active transport rate. The optimization algorithm, which is independent of the numerical method used to solve the model equations, runs in a few minutes on a 1000 MHz desktop computer. The parameters varied were: tubular permeabilities to water and solute; maximum active solute transport rates of the ascending limb of Henle and the collecting duct (CD); length of the prebend enlargement (PBE) of the descending limb; fractional solute delivery to the CD; solute concentration of tubular fluid entering the CD at the cortico-medullary boundary; and rate of exponential CD population decrease along the medullary cone. Using a base-case parameter set and parameter bounds suggested by physiologic experiments, the optimization algorithm identified a maximum-efficiency set of parameter values that increased efficiency by 40% above base-case efficiency; a minimum-efficiency set reduced efficiency by about 41%. When maximum-efficiency parameter values were computed as medullary length varied over the physiologic range, the PBE was found to make up 88% of a short medullary cone but only 8% of a long medullary cone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boykin, S. L. B. and E. J. Braun (1993). Entry of nephrons into the collecting duct network of the avian kidney: a comparison of chickens and desert quail. J. Morphol. 216, 216–269.

    Article  Google Scholar 

  • Braun, E. J. (1993). Renal function in birds, in New Insights in Vertebrate Kidney Function, J. A. Brown, R. J. Balment and J. C. Rankin (Eds), Cambridge: Cambridge University Press, pp. 167–188.

    Google Scholar 

  • Braun, E. J. and W. H. Dantzler (1972). Function of mammalian-type and reptilian-type nephrons in kidney of desert quail. Am. J. Physiol. 222, 617–629.

    Google Scholar 

  • Braun, E. J. and P. R. Reimer (1988). Structure of avian loop of Henle as related to countercurrent multiplier system. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24) F500–F512.

    Google Scholar 

  • Breinbauer, M. (1988). Das nierenmodell als inverses problem, Diploma thesis, Tech. University of Munich.

  • Breinbauer, M. and P. Lory (1991). The kidney model as an inverse problem. Appl. Math. Comput. 44, 195–223.

    Article  Google Scholar 

  • Broyden, C. G. (1967). Quasi-Newton methods and their application to function minimisation. Math. Comput. 21, 368–381.

    Article  MATH  MathSciNet  Google Scholar 

  • Casotti, G., K. K. Lindberg and E. J. Braun (2000). Functional morphology of the avian medullary cone. Am. J. Physiol. Regulatory Integrative Comput. Physiol. 279, R1722–R1730.

    Google Scholar 

  • Emery, N., T. L. Poulson and W. B. Kinter (1972). Production of concentrated urine by avian kidneys. Am. J. Physiol. 223, 180–187.

    Google Scholar 

  • Friedman, M. H. (1986). Principles and Models of Biological Transport, Berlin: Springer.

    Google Scholar 

  • Goldstein, D. L. and E. J. Braun (1989). Structure and concentrating ability in the avian kidney. Am. J. Physiol. 256 (Regulatory Integrative Comput. Physiol. 25) R501–R509.

    Google Scholar 

  • Greger, R. and H. Velázquez (1987). The cortical thick ascending limb and early distal convoluted tubule in the concentrating mechanism. Kidney Int. 31, 590–596.

    Google Scholar 

  • Jamison, R. L. and W. Kriz (1982). Urinary Concentrating Mechanism: Structure and Function, New York: Oxford University Press.

    Google Scholar 

  • Kedem, O. and A. Katchalsky (1958). Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27, 229–246.

    Article  Google Scholar 

  • Kim, S. and R. P. Tewarson (1996). Computational techniques for inverse problems in kidney modeling. Appl. Math. Lett. 9, 77–81.

    Article  MathSciNet  Google Scholar 

  • Kraft, D. (1988). A software package for sequential quadratic programming. Report DFVLR-FB 88-28, Deutsche Foschings—und Versuchsanstalt für Luft—und Raumfahrt, Oberpfaffenhofen, Germany.

  • Laverty, G. and W. H. Dantzler (1982). Micropuncture of superficial nephrons in avian (Sturnus vulgaris) kidney. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 243 (Renal Fluid Electrolyte Physiol. 12) F561–F569.

    Google Scholar 

  • Layton, H. E. (2002). Mathematical models of the mammalian urine concentrating mechanism, in Membrane Transport and Renal Physiology, The IMA Volumes in Mathematics and Its Applications, Vol. 129, H. E. Layton and A. M. Weinstein (Eds), New York: Springer, pp. 233–272.

    Google Scholar 

  • Layton, H. E. and J. M. Davies (1993). Distributed solute and water reabsorption in a central core model of the renal medulla. Math. Biosci. 116, 169–196.

    Article  Google Scholar 

  • Layton, H. E., J. M. Davies, G. Casotti and E. J. Braun (2000). Mathematical model of an avian urine concentratingmechanism. Am. J. Physiol. Renal Physiol. 279, F1139–F1160.

    Google Scholar 

  • Layton, H. E., M. A. Knepper, and C. L. Chou (1996). Permeability criteria for effective function of passive countercurrent multiplier. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39) F9–F20.

    Google Scholar 

  • Layton, H. E. and E. B. Pitman (1994). A dynamic numerical method for models of renal tubules. Bull. Math. Biol. 56, 547–556.

    Article  Google Scholar 

  • Layton, H. E., E. B. Pitman and M. A. Knepper (1995). A dynamic numerical method for models of the urine concentrating mechanism. SIAM J. Appl. Math. 55, 1390–1418.

    Article  Google Scholar 

  • Mejía, R., R. B. Kellogg and J. L. Stephenson (1977). Comparison of numerical methods for renal network flows. J. Comput. Phys. 23, 53–62.

    Article  Google Scholar 

  • Miwa, T. and H. Nishimura (1986). Diluting segment in avian kidney II. Water and chloride transport. Am. J. Physiol. 250 (Regulatory Integrative Comput. Physiol. 19) R341–R347.

    Google Scholar 

  • Murtagh, B. A. and M. A. Saunders (1978). Large-scale linearly constrained optimization. Math. Program. 14, 41–72.

    Article  MathSciNet  Google Scholar 

  • Murtagh, B. A. and M. A. Saunders (1998). MINOS 5.5 User’s Guide. Technical Report Sol 83-20R, Stanford University, Stanford, CA, Department of Operations Research.

    Google Scholar 

  • Nishimura, H., C. Koseki, M. Imai, and E. J. Braun (1989). Sodium chloride and water transport in the thin descending limb of Henle of the quail. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26) F994–F1002.

    Google Scholar 

  • Nishimura, H., C. Koseki, and T. B. Patel (1996). Water transport in collecting ducts of Japanese quail. Am. J. Physiol. 271 (Regulatory Integrative Comp. Physiol. 40) R1535–R1543.

    Google Scholar 

  • Sands, J. M. and H. E. Layton (2000). Urine concentrating mechanism and its regulation, in The Kidney: Physiology and Pathophysiology, 3rd edn, D. W. Seldin and G. Giebisch (Eds), Philadelphia, PA: Lippincott, Williams & Williams, pp. 1175–1216.

    Google Scholar 

  • Schnermann, J., J. Briggs, and G. Schubert (1982). In situ studies of the distal convoluted tubule in the rat. I. Evidence for NaCl secretion. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12) F160–F166.

    Google Scholar 

  • Skadhauge, E. (1977). Solute composition of the osmotic space of ureteral urine in dehydrated chickens (Gallus domesticus). Comput. Biochem. Physiol. 56A, 271–274.

    Article  Google Scholar 

  • Skadhauge, E. and B. Schmidt-Nielsen (1967). Renal medullary electrolyte and urea gradient in chickens and turkeys. Am. J. Physiol. 212, 1313–1318.

    Google Scholar 

  • Stephenson, J. L. (1972). Concentration of urine in a central core model of the renal counterflow system. Kidney Int. 2, 85–94.

    Google Scholar 

  • Stephenson, J. L. (1992). Urinary concentration and dilution: models, in Renal Physiology, Section 8 of Handbook of Physiology, published for the American Physiological Society, E. E. Windhager (Ed.), New York: Oxford University Press, pp. 1349–1408.

    Google Scholar 

  • Stephenson, J. L., R. Mejía and R. P. Tewarson (1976). Model of solute and water movement in the kidney. Proc. Natl Acad. Sci. USA 73, 252–256.

    Article  Google Scholar 

  • Stephenson, J. L., Y. Zhang, and R. Tewarson (1989). Electrolyte, urea, and water transport in a two-nephron central core model of the renal medulla. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26) F399–F413.

    Google Scholar 

  • Stokes, J. B. (1982). Na and K transport across the cortical and outer medullary collecting tubule of the rabbit: evidence for diffusion across the outer medullary portion. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11) F514–F520.

    Google Scholar 

  • Tewarson, R. P. (1993a). Inverse problem for kidney concentrating mechanism. Appl. Math. Lett. 6, 63–66.

    Article  MATH  Google Scholar 

  • Tewarson, R. P. (1993b). Models of kidney concentratingmechanism: relationship between core concentration and tube permeabilities. Appl. Math. Lett. 6, 71–74.

    Article  MATH  Google Scholar 

  • Tewarson, R. P., A. Kydes, J. L. Stephenson and R. Mejía (1976). Use of sparse matrix techniques in numerical solution of differential equations for renal counterflow systems. Comput. Biomed. Res. 9, 507–520.

    Article  Google Scholar 

  • Tewarson, R. P. and M. Marcano (1997). Use of generalized inverses in a renal optimization problem. Inverse Probl. Eng. 5, 1–9.

    Google Scholar 

  • Tewarson, R. P., H. Wang, J. L. Stephenson and J. F. Jen (1991). Efficient solution of differential equations for kidney concentrating mechanism analyses. Appl. Math. Lett. 4, 69–72.

    Article  Google Scholar 

  • Weast, R. C. (1974). Handbook of Chemistry and Physics, 55 edn, Cleveland, OH: CRC.

    Google Scholar 

  • Wesson, L. G. and W. P. Anslow (1952). Effect of osmotic and mercurial diuresis on simultaneous water diuresis. Am. J. Physiol. 170, 255–269.

    Google Scholar 

  • Wexler, A. S., R. E. Kalaba, and D. H. Marsh (1991). Three-dimensional anatomy and renal concentratingmechanism. II: sensitivity results. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 29) F384–F394.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Marcano-Velázquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcano-Velázquez, M., Layton, H.E. An inverse algorithm for a mathematical model of an avian urine concentrating mechanism. Bull. Math. Biol. 65, 665–691 (2003). https://doi.org/10.1016/S0092-8240(03)00029-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(03)00029-6

Keywords

Navigation