Skip to main content
Log in

A multiphase model describing vascular tumour growth

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper we present a new model framework for studying vascular tumour growth, in which the blood vessel density is explicitly considered. Our continuum model comprises conservation of mass and momentum equations for the volume fractions of tumour cells, extracellular material and blood vessels. We include the physical mechanisms that we believe to be dominant, namely birth and death of tumour cells, supply and removal of extracellular fluid via the blood and lymph drainage vessels, angiogenesis and blood vessel occlusion. We suppose that the tumour cells move in order to relieve the increase in mechanical stress caused by their proliferation. We show how to reduce the model to a system of coupled partial differential equations for the volume fraction of tumour cells and blood vessels and the phase averaged velocity of the mixture. We consider possible parameter regimes of the resulting model. We solve the equations numerically in these cases, and discuss the resulting behaviour. The model is able to reproduce tumour structure that is found in vivo in certain cases. Our framework can be easily modified to incorporate the effect of other phases, or to include the effect of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baish, J. W., Y. Gazit, D. A. Berk, M. Nozue, L. T. Baxter and R. K. Jain (1996). Role of tumour vasculature architecture in nutrient and drug delivery: an invasion percolation-based network model. Microvasc. Res. 51, 327–346.

    Article  Google Scholar 

  • Beliën, J. A. M., P. J. Van Diest and J. P. A. Baak (1999). Relationships between vascularization and proliferation in invasive breast cancer. J. Pathol. 189, 309–318.

    Article  Google Scholar 

  • Bicknell, R., C. E. Lewis and N. Ferrara (1997). Tumour Angiogenesis, Oxford: Oxford University Press.

    Google Scholar 

  • Boucher, Y. and R. K. Jain (1992). Microvascular pressure is the principal driving force for interstitial hypertension in solid tumours: implications for vascular collapse. Cancer Res. 52, 5110–5114.

    Google Scholar 

  • Breward, C.J.W., H. M. Byrne and C. E. Lewis (2001). Modeling the interactions between tumour cells and a blood vessel in microenvironment within a vascular tumour. Euro. J. Appl. Math. 12, 529–556.

    Article  MathSciNet  MATH  Google Scholar 

  • Breward, C. J. W., H. M. Byrne and C. E. Lewis (2002). The role of cell-cell interactions in a two-phase model for avascular tumour growth. J. Math. Biol. 45, 125–152.

    Article  MathSciNet  MATH  Google Scholar 

  • Brown, N. J., C. A. Staton, G. R. Rodgers, K. P. Corke, J. C. E. Underwood and C. E. Lewis (2002). Fibrinogen E fragment selectively disrupts the vasculature and inhibits the growth of tumours in a syngeneic murine model. Br. J. Cancer 86, 1813–1816.

    Article  Google Scholar 

  • Byrne, H. M. and M. A. J. Chaplain (1995). Growth of nonnecrotic tumours in the presence and absence of inhibitors. Math. Biosci. 2, 151–181.

    Article  Google Scholar 

  • Candido, K. A., K. Shimizu, J. C. McLaughlin, R. Kunkel, J. A. Fuller, B. G. Redman, E. K. Thomas, B. J. Nickoloff and J. J. Mule (2001). Local administration of dendritic cells inhibits established breast tumour growth: implications for apoptosis-inducing agents. Cancer Res. 61, 228–236.

    Google Scholar 

  • Chen, Y-.C., H. M. Byrne and J. R. King (2001). The influence of growth-induced stress from the surrounding medium on the development of multicell spheroids. J. Math. Biol. 43, 191–220.

    Article  MathSciNet  MATH  Google Scholar 

  • Fowler, A. C. (1997). Mathematical Models in the Applied Sciences, Cambridge: Cambridge University Press.

    Google Scholar 

  • Galbraith, S. M., D. J. Chaplin, F. Lee, M. R. L. Stratford, R. J. Locke, B. Vojnovic and G. M. Tozer (2001). Effects of combretastatin A4 phosphate on endothelial cell morphology in vitro and relationship to tumour vascular targeting activity in vivo. Anticancer Res. 21, 93–102.

    Google Scholar 

  • Gatenby, R. A. and E. T. Gawlinski (1996). A reaction-diffusionmodel of cancer invasion. Cancer Res. 56, 5745–5753.

    Google Scholar 

  • Griffon-Etienne, G., Y. Boucher, C. Brekken, H. D. Suit and R. K. Jain (1999). Taxane-induced apoptosis decompressed blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res. 59, 3776–3782.

    Google Scholar 

  • Hahnfield, P., D. Panigraphy, J. Folkman and L. Hlatky (1999). Tumour development under angiogenic signalling: a dynamic theory of tumour growth, treatment response and post-vascular dormancy. Cancer Res. 59, 4770–4775.

    Google Scholar 

  • Hashizume, H., P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain and D. M. McDonald (2000). Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156, 1363–1380.

    Google Scholar 

  • Jackson, T. L. and H. M. Byrne (2000). A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math. Biosci. 164, 17–38.

    Article  MathSciNet  MATH  Google Scholar 

  • Kozin, S. V., Y. Boucher, D. J. Hicklin, P. Bohlen, R. K. Jain and H. D. Suit (2001). Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumour xenografts. Cancer Res. 61, 39–44.

    Google Scholar 

  • Krogh, A. (1919). The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. 52, 409–415.

    Google Scholar 

  • Liao, F. et al. (2000). Monoclonal antibody to vascular endothelial-chadherin is a potent inhibitor of angiogenesis, tumour growth and metastasis. Cancer Res. 60, 6805–6810.

    Google Scholar 

  • Maseide, K. and E. K. Rofstad (2000). Mathematical modelling of chronic hypoxia in tumours considering potential doubling time and hypoxic cell lifetime. Radiother. Oncol. 54, 171–177.

    Article  Google Scholar 

  • Orme, M. E. and M. A. J. Chaplain (1996). A mathematical model of vascular tumour growth and invasion. Math. Comput. Modelling 23, 43–60.

    Article  MathSciNet  MATH  Google Scholar 

  • O’Reilly, M. S., L. Holmgren, Y. Shing, C. Chen, R. A. Rodenthal, M. Moses, W. S. Lane, Y. Cao, E. H. Sage and J. Folkman (1994). Angiostatin. A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328.

    Article  Google Scholar 

  • O’Reilly, M. S., T. Boehm, Y. Shing, N. Fukai, G. Vasios, W. S. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen and J. Folkman (1997). Endostatin. An endogenous inhibitor of angiogenesis and tumour growth. Cell 88, 277–285.

    Article  Google Scholar 

  • Sherratt, J. A. (2000). Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations. Proc. R. Soc. London A 456, 2365–2386.

    Article  MATH  MathSciNet  Google Scholar 

  • Todo, T., R. L. Martuza, M. J. Dallman and S. D. Rabkin (2001). In situ expression of soluble B7-1 in the context of oncolytic herpes simplex virus induces potent antitumour immunity. Cancer Res. 61, 153–161.

    Google Scholar 

  • Ward, J. P. and J. R. King (1997). Mathematical modelling of avascular tumour growth. IMA J. Math. Appl. Med. 14, 39–69.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. W. Breward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breward, C.J.W., Byrne, H.M. & Lewis, C.E. A multiphase model describing vascular tumour growth. Bull. Math. Biol. 65, 609–640 (2003). https://doi.org/10.1016/S0092-8240(03)00027-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(03)00027-2

Keywords

Navigation