Skip to main content

3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth

  • Chapter
  • First Online:
Micro and Nano Flow Systems for Bioanalysis

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 2))

Abstract

We present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.

The chapter is based on Perfahl et al., 2011, Multiscale Modelling of Vascular Tumour Growth in 3D: The Roles of Domain Size and Boundary Conditions. PLoS ONE 6(4): e14790. doi:10.1371/journal.pone.0014790

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://computation.llnl.gov/casc/sundials/main.html.

  2. 2.

    http://crd.lbl.gov/~xiaoye/SuperLU/.

References

  1. Alarcón T, Byrne HM, Maini PK (2003) A cellular automaton model for tumour growth in an inhomogeneous environment. J Theor Biol 225:257–274

    Article  Google Scholar 

  2. Alarcón T, Byrne HM, Maini PK (2004) A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J Theor Biol 229(3):395–411

    Article  Google Scholar 

  3. Alarcón T, Byrne HM, Maini PK (2005) A multiple scale model for tumor growth. Multiscale Model Sim 3:440–475

    Article  MATH  Google Scholar 

  4. Alarcón T, Owen MR, Byrne HM, Maini PK (2006) Multiscale modelling of tumour growth and therapy: The influence of vessel normalisation on chemotherapy. Comput Math Method M7(2-3):85–119

    Article  MATH  Google Scholar 

  5. Anderson ARA (2005) A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion. Math Med Biol 22:163–186

    Article  MATH  Google Scholar 

  6. Anderson ARA, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60(5):857–899

    Article  MATH  Google Scholar 

  7. Arakelyan L, Vainstein V, Agur Z (2002) A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth. Angiogenesis 5(3):203–14

    Article  Google Scholar 

  8. Arakelyan L, Merbl Y, Agur Z (2005) Vessel maturation effects on tumour growth: validation of a computer model in implanted human ovarian carcinoma spheroids. Eur J Cancer 41(1):159–167

    Article  Google Scholar 

  9. Breward CJW, Byrne HM, Lewis CE (2003) A multiphase model describing vascular tumour growth. Bull Math Biol 65:609–640

    Article  Google Scholar 

  10. Clark ER (1918) Studies on the growth of blood-vessels in the tail of the frog larva - by observation and experiment on the living animal. Am J Anat 23(1):37–88

    Article  Google Scholar 

  11. Drasdo D, Jagiella N, Ramis-Conde I, Vignon-Clementel I, Weens W (2010) Modeling steps from a benign tumor to an invasive cancer: Examples of intrinsically multi-scale problems. In: Chauviere A, Preziosi L, Verdier C (eds) Cell mechanics: From single scale-based models to multiscale modeling. Chapman & Hall/CRC, pp 379–417

    Google Scholar 

  12. Folkman J (1971) Tumour angiogenesis – therapeutic implications. New Engl J Med 285:1182–1186

    Article  Google Scholar 

  13. Folkman J, Klagsburn M (1987) Angiogenic factors. Science 235:442–447

    Article  Google Scholar 

  14. Frieboes HB, Lowengrub JS, Wise S, Zheng X, Macklin P, Bearer E, Cristini V (2007) Computer simulation of glioma growth and morphology. Neuroimage 37(S1):59–70

    Article  Google Scholar 

  15. Lee DS, Rieger H, Bartha K (2006) Flow correlated percolation during vascular remodeling in growing tumors. Phys Rev Lett 96(5):058,104–4

    Google Scholar 

  16. Lloyd BA, Szczerba D, Rudin M, Székely G (2008) A computational framework for modelling solid tumour growth. Phil Trans R Soc A 366:3301–3318

    Article  Google Scholar 

  17. Macklin P, McDougall S, Anderson AR, Chaplain MAJ, Cristini V, Lowengrub J (2009) Multiscale modelling and nonlinear simulation of vascular tumour growth. J Math Biol 58:765–798

    Article  MathSciNet  Google Scholar 

  18. Mantzaris N, Webb SD, Othmer HG (2004) Mathematical modelling of tumour angiogenesis: A review. J Math Biol 49:111–187

    Article  MathSciNet  MATH  Google Scholar 

  19. McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies. J Theor Biol 241(3):564–89

    Article  MathSciNet  Google Scholar 

  20. Owen MR, Alarcón T, Maini PK, Byrne HM (2009) Angiogenesis and vascular remodelling in normal and cancerous tissues. J Math Biol 58:689–721

    Article  MathSciNet  Google Scholar 

  21. Owen M, Stamper I, Muthana M, Richardson G, Dobson J, Lewis C, Byrne H (2011) Mathematical modeling predicts synergistic antitumor effects of combining a macrophage-based, hypoxia-targeted gene therapy with chemotherapy. Cancer Res 71(8):2826

    Article  Google Scholar 

  22. Perfahl H, Byrne H, Chen T, Estrella V, Alarcón T, Lapin A, Gatenby R, Gillies R, Lloyd M, Maini P, et al (2011) Multiscale modelling of vascular tumour growth in 3d: The roles of domain size and boundary conditions. PloS one 6(4):e14,790. doi:10.1371/journal.pone.0014790

    Google Scholar 

  23. Plank MJ, Sleeman BD (2003) A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. Math Med Biol 20(2):135–181

    Article  MATH  Google Scholar 

  24. Plank M, Sleeman B (2004) Lattice and non-lattice models of tumour angiogenesis. Bull Math Biol 66(6):1785–1819

    Article  MathSciNet  Google Scholar 

  25. Pries AR, Secomb TW, Gaehtgens P (1998) Structural adaptation and stability of microvascular networks: Theory and simulations. Am J Physiol 275(2 Pt 2):H349–H360

    Google Scholar 

  26. Pries A, Reglin B, Secomb T (2001) Structural adaptation of microvascular networks: Functional roles of adaptive responses. Am J Physiol 281:H1015–H1025

    Google Scholar 

  27. Pugh C, Rattcliffe P (2003) Regulation of angiogenesis by hypoxia: Role of the hif system. Nature Med 9:677–684

    Article  Google Scholar 

  28. Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman L, Wofovitz E (2003) Fluid shear stress and the vascular endothelium: For better and for worse. Progr Biophys Mol Biol 81:177–199

    Article  Google Scholar 

  29. Risau W (1997) Mechanisms of angiogenesis. Nature 386:871–875

    Google Scholar 

  30. Schaller G, Meyer-Hermann M (2005) Multicellular tumor spheroid in an off-lattice Voronoi-Delaunay cell model. Phys Rev E 71:1–16

    Article  MathSciNet  Google Scholar 

  31. Secomb TW, Hsu R, Beamer NB, Coull BM (2000) Theoretical simulation of oxygen transport to brain by networks of microvessels: Effects of oxygen supply and demand on tissue hypoxia. Microcirculation 7:237–247

    Google Scholar 

  32. Shirinifard A, Gens JS, Zaitlen BL, Poplawski NJ, Swat M (2009) 3D Multi-Cell simulation of tumor growth and angiogenesis. PLoS ONE 4(10):e7190. doi:10.1371/journal.pone.0007190

  33. Stéphanou A, McDougall SR, Anderson ARA, Chaplain MAJ (2005) Mathematical modelling of flow in 2d and 3d vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies. Math Comp Modelling 41(10):1137–1156

    Article  MATH  Google Scholar 

  34. Stokes CL, Lauffenburger DA (1991) Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol 152(3):377–403

    Article  Google Scholar 

  35. Tracqui P (2009) Biophysical models of tumour growth. Rep Prog Phys 72(5):056,701

    Google Scholar 

  36. Tyson JJ, Novak B (2001) Regulation of the eukaryotic cell cycle: Molecular antagonism, hysteresis, and irreversible transitions. J Theor Biol 210:249–263

    Article  Google Scholar 

  37. Zheng X, Wise SM, Cristini V (2005) Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level set method. Bull Math Biol 67(2):211–259

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

HMB, MRO and HP acknowledge financial support by the Marie Curie Network MMBNOTT (Project No. MEST-CT-2005-020723). RAG and PKM acknowledge partial support from NIH/NCI grant U54CA143970. HP, AL and MR thank the BMBF—Funding Initiative FORSYS Partner: “Predictive Cancer Therapy”. In vivo window chamber work was funded in part by Moffitt Cancer Center PS-OC NIH/NCI U54CA143970. This publication was based on work supported in part by Award No. KUK-C1-1013-04, made by King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Perfahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Perfahl, H. et al. (2013). 3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth. In: Collins, M., Koenig, C. (eds) Micro and Nano Flow Systems for Bioanalysis. Bioanalysis, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4376-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4376-6_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4375-9

  • Online ISBN: 978-1-4614-4376-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics