Skip to main content

Advertisement

Log in

Therapeutic approaches in glycogen storage disease type II/pompe disease

  • Review Article
  • Published:
Neurotherapeutics

Summary

Glycogen storage disease type II (GSDII)/Pompe disease is an autosomal recessive multi-system disorder due to a deficiency of the glycogen-degrading lysosomal enzyme, acid alpha-glucosidase. Without adequate levels of alpha-glucosidase, there is a progressive accumulation of glycogen inside the lysosome, resulting in lysosomal expansion in many tissues, although the major clinical manifestations are seen in cardiac and skeletal muscle. Pompe disease presents as a continuum of clinical phenotypes. In the most severe cases, disease onset occurs in infancy and death results from cardiac and respiratory failure within the first 1 or 2 years of life. In the milder late-onset forms, cardiac muscle is spared and muscle weakness is the primary symptom. Weakness of respiratory muscles is the major cause of mortality in these cases. Enzyme replacement therapy (ERT) with alglucosidase alfa (Myozyme; Genzyme Corp., Framingham, MA) is now available for all forms of glycogen storage disease type II. ERT has shown remarkable success in reversing pathology in cardiac muscle and extending life expectancy in infantile patients. However, skeletal muscle has proven to be a more challenging target for ERT. Although ERT is less effective in skeletal muscle than was hoped for, the lessons learned from both clinical and pre-clinical ERT studies have greatly expanded our understanding of the pathogenesis of the disease. A combination of fundamental studies and clinical follow-up, as well as exploration of other therapies, is necessary to take treatment for glycogen storage disease type II to the next level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martiniuk F, Chen A, Mack A, et al. Carrier frequency for glycogen storage disease type II in New York and estimates of affected individuals born with the disease. Am J Med Genet 1998;79: 69–72.

    Article  CAS  PubMed  Google Scholar 

  2. Engel AG, Hirschhorn R, Huie ML. Acid maltase deficiency. In: Engel AG, Franzini-Armstrong C, eds. Myology. New York: McGraw-Hill, 2003: 1559–1586.

    Google Scholar 

  3. Winkel LP, Hagemans ML, Van Doorn PA, et al. The natural course of non-classic Pompe’s disease; a review of 225 published cases. J Neurol 2005;252: 875–884.

    Article  PubMed  Google Scholar 

  4. Kishnani PS, Hwu WL, Mandel H, Nicolino M, Yong F, Corzo D. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr 2006;148: 671–676.

    Article  PubMed  Google Scholar 

  5. Griffin JL. Infantile acid maltase deficiency. III. Ultrastructure of metachromatic material and glycogen in muscle fibers. Virchows Arch B Cell Pathol Incl Mol Pathol 1984;45: 51–61.

    Article  CAS  PubMed  Google Scholar 

  6. Thurberg BL, Lynch MC, Vaccaro C, et al. Characterization of pre- and post-treatment pathology after enzyme replacement therapy for pompe disease. Lab Invest 2006;86: 1208–1220.

    Article  CAS  PubMed  Google Scholar 

  7. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008;451: 1069–1075.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Fukuda T, Ahearn M, Roberts A, et al. Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in pompe disease. Mol Ther 2006;14: 831–839.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Raben N, Takikita S, Pittis MG, et al. Deconstructing Pompe disease by analyzing single muscle fibers. Autophagy 2007;3: 546–552.

    Article  CAS  PubMed  Google Scholar 

  10. Schoser BG, Muller-Hocker J, Horvath R, et al. Adult-onset glycogen storage disease type 2: clinico-pathological phenotype re-visited. Neuropathol Appl Neurobiol 2007;33: 544–559.

    CAS  PubMed  Google Scholar 

  11. Muller-Felber W, Horvath R, Gempel K, et al. Late onset Pompe disease: clinical and neurophysiological spectrum of 38 patients including long-term follow-up in 18 patients. Neuromuscul Disord 2007;17: 698–706.

    Article  PubMed  Google Scholar 

  12. Kornfeld S. Structure and function of the mannose 6-phosphate/ insulinlike growth factor II receptors. Annu Rev Biochem 1992;61: 307–330.

    Article  CAS  PubMed  Google Scholar 

  13. Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 2003;4: 202–212.

    Article  CAS  PubMed  Google Scholar 

  14. Neufeld EF, Fratantoni JC. Inborn errors of mucopolysaccharide metabolism. Science 1970;169: 141–146.

    Article  CAS  PubMed  Google Scholar 

  15. Wisselaar HA, Kroos MA, Hermans MM, van Beeumen J, Reuser AJ. Structural and functional changes of lysosomal acid alpha-glucosidase during intracellular transport and maturation. J Biol Chem 1993;268: 2223–2231.

    CAS  PubMed  Google Scholar 

  16. Moreland RJ, Jin X, Zhang XK, Decker RW, Albee KL, Lee KL, et al. Lysosomal acid alpha-glucosidase consists of four different peptides processed from a single chain precursor. J Biol Chem 2005;280: 6780–6791.

    Article  CAS  PubMed  Google Scholar 

  17. Van den Hout H, Reuser AJ, Vulto AG, Loonen MC, Cromme-Dijkhuis A, Van der Ploeg AT. Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet 2000;356: 397–398.

    Article  PubMed  Google Scholar 

  18. Van den Hout JM, Reuser AJ, de Klerk JB, Arts WF, Smeitink JA, Van der Ploeg AT. Enzyme therapy for pompe disease with recombinant human alpha-glucosidase from rabbit milk. J Inherit Metab Dis 2001;24: 266–274.

    Article  PubMed  Google Scholar 

  19. Van den Hout JM, Kamphoven JH, Winkel LP, et al. Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics 2004;113: e448-e457.

    Article  PubMed  Google Scholar 

  20. Amalfitano A, Bengur AR, Morse RP, et al. Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med 2001;3: 132–138.

    CAS  PubMed  Google Scholar 

  21. Kishnani PS, Nicolino M, Voit T, et al. Chinese hamster ovary cell-derived recombinant human acid alpha-glucosidase in infantile-onset Pompe disease. J Pediatr 2006;149: 89–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Klinge L, Straub V, Neudorf U, Voit T. Enzyme replacement therapy in classical infantile pompe disease: results of a ten-month follow-up study. Neuropediatrics 2005;36: 6–11.

    Article  CAS  PubMed  Google Scholar 

  23. Klinge L, Straub V, Neudorf U, et al. Safety and efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial. Neuromuscul Disord 2005;15: 24–31.

    Article  CAS  PubMed  Google Scholar 

  24. Kishnani PS, Corzo D, Nicolino M, et al. Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology 2007;68: 99–109.

    Article  CAS  PubMed  Google Scholar 

  25. Winkel LP, Van den Hout JM, Kamphoven JH, et al. Enzyme replacement therapy in late-onset Pompe’s disease: a three-year follow-up. Ann Neurol 2004;55: 495–502.

    Article  CAS  PubMed  Google Scholar 

  26. van Capelle CI, Winkel LPF, Hagemans MLC, et al. Paper presented at: Fifth Symposium on Lysosomal Storage Disorders; April 10–12, 2008; Paris, France.

  27. Rossi M, Parenti G, Della CR, Romano A, et al. Long-term enzyme replacement therapy for Pompe disease with recombinant human alpha-glucosidase derived from Chinese hamster ovary cells. J Child Neurol 2007;22: 565–573.

    Article  PubMed  Google Scholar 

  28. Raben N, Nagaraju K, Lee A, et al. Induction of tolerance to a recombinant human enzyme, acid alpha-glucosidase, in enzyme deficient knockout mice. Transgenic Res 2003;12(2): 171–178.

    Article  CAS  PubMed  Google Scholar 

  29. Drost MR, Schaart G, van Dijk P, et al. Both type 1 and type 2a muscle fibers can respond to enzyme therapy in Pompe disease. Muscle Nerve 2008;37: 251–255.

    Article  PubMed  Google Scholar 

  30. Zaretsky JZ, Candotti F, Boerkoel C, et al. Retroviral transfer of acid alpha-glucosidase cDNA to enzyme-deficient myoblasts results in phenotypic spread of the genotypic correction by both secretion and fusion. Hum Gene Ther 1997;8: 1555–1563.

    Article  CAS  PubMed  Google Scholar 

  31. Nicolino MP, Puech JP, Kremer EJ, et al. Adenovirus-mediated transfer of the acid alpha-glucosidase gene into fibroblasts, myoblasts and myotubes from patients with glycogen storage disease type II leads to high level expression of enzyme and corrects glycogen accumulation. Hum Mol Genet 1998;7: 1695–1702.

    Article  CAS  PubMed  Google Scholar 

  32. Pauly DF, Fraites TJ, Toma C, et al. Intercellular transfer of the virally derived precursor form of acid alpha-glucosidase corrects the enzyme deficiency in inherited cardioskeletal myopathy Pompe disease. Hum Gene Ther 2001;12: 527–538.

    Article  CAS  PubMed  Google Scholar 

  33. Ding E, Hu H, Hodges BL, et al. Efficacy of gene therapy for a prototypical lysosomal storage disease (GSD-II) is critically dependent on vector dose, transgene promoter, and the tissues targeted for vector transduction. Mol Ther 2002;5: 436–446.

    Article  CAS  PubMed  Google Scholar 

  34. Fraites TJ Jr., Schleissing MR, Shanely RA, et al. Correction of the enzymatic and functional deficits in a model of Pompe disease using adeno-associated virus vectors. Mol Ther 2002;5(5 Pt 1): 571–578.

    Article  CAS  PubMed  Google Scholar 

  35. Sun B, Zhang H, Franco LM, et al. Correction of glycogen storage disease type II by an adeno-associated virus vector containing a muscle-specific promoter. Mol Ther 2005;11: 889–898.

    Article  CAS  PubMed  Google Scholar 

  36. Raben N, Lu N, Nagaraju K, et al. Conditional tissue-specific expression of the acid alpha-glucosidase (GAA) gene in the GAA knockout mice: implications for therapy. Hum Mol Genet 2001;10: 2039–2047.

    Article  CAS  PubMed  Google Scholar 

  37. Raben N, Jatkar T, Lee A, et al. Glycogen stored in skeletal but not in cardiac muscle in acid alpha-glucosidase mutant (Pompe) mice is highly resistant to transgene-encoded human enzyme. Mol Ther 2002;6: 601–608.

    Article  CAS  PubMed  Google Scholar 

  38. Martin-Touaux E, Puech JP, Chateau D, et al. Muscle as a putative producer of acid alpha-glucosidase for glycogenosis type II gene therapy. Hum Mol Genet 2002;11: 1637–1645.

    Article  CAS  PubMed  Google Scholar 

  39. Amalfitano A, McVie-Wylie AJ, Hu H, et al. Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-alpha-glucosidase. Proc Natl Acad Sci U S A 1999;96: 8861–8866.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Xu F, Ding E, Migone F, et al. Glycogen storage in multiple muscles of old GSD-II mice can be rapidly cleared after a single intravenous injection with a modified adenoviral vector expressing hGAA. J Gene Med 2005;7: 171–178.

    Article  CAS  PubMed  Google Scholar 

  41. Ding EY, Hodges BL, Hu H, et al. Long-term efficacy after [E1-, polymerase-] adenovirus-mediated transfer of human acid-alpha-glucosidase gene into glycogen storage disease type ii knockout mice. Hum Gene Ther 2001;12: 955–965.

    Article  CAS  PubMed  Google Scholar 

  42. Xu F, Ding E, Liao SX, et al. Improved efficacy of gene therapy approaches for Pompe disease using a new, immune-deficient GSD-II mouse model. Gene Ther 2004;11: 1590–1598.

    Article  CAS  PubMed  Google Scholar 

  43. Cresawn KO, Fraites TJ, Wasserfall C, et al. Impact of humoral immune response on distribution and efficacy of recombinant adeno-associated virus-derived acid alpha-glucosidase in a model of glycogen storage disease type II. Hum Gene Ther 2005;16: 68–80.

    Article  CAS  PubMed  Google Scholar 

  44. Sun B, Chen YT, Bird A, et al. Packaging of an AAV vector encoding human acid alpha-glucosidase for gene therapy in glycogen storage disease type II with a modified hybrid adenovirus-AAV vector. Mol Ther 2003;7: 467–477.

    Article  CAS  PubMed  Google Scholar 

  45. Sun B, Zhang H, Franco LM, et al. Efficacy of an adeno-associated virus 8-pseudotyped vector in glycogen storage disease type II. Mol Ther 2005;11: 57–65.

    Article  CAS  PubMed  Google Scholar 

  46. Sun B, Chen YT, Bird A, Amalfitano A, Koeberl DD. Long-term correction of glycogen storage disease type II with a hybrid Ad-AAV vector. Mol Ther 2003;7: 193–201.

    Article  CAS  PubMed  Google Scholar 

  47. Sun B, Zhang H, Benjamin DK Jr., et al. Enhanced efficacy of an AAV vector encoding chimeric, highly secreted acid alpha-glucosidase in glycogen storage disease type II. Mol Ther 2006;14: 822–830.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kiang A, Hartman ZC, Liao S, et al. Fully deleted adenovirus persistently expressing GAA accomplishes long-term skeletal muscle glycogen correction in tolerant and nontolerant GSD-II mice. Mol Ther 2006;13: 127–134.

    Article  CAS  PubMed  Google Scholar 

  49. Franco LM, Sun B, Yang X, et al. Evasion of immune responses to introduced human acid alpha-glucosidase by liver-restricted expression in glycogen storage disease type II. Mol Ther 2005;12: 876–884.

    Article  CAS  PubMed  Google Scholar 

  50. Pacak CA, Mah CS, Thattaliyath BD, et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 2006;99: e3-e9.

    Article  CAS  PubMed  Google Scholar 

  51. Mah C, Cresawn KO, Fraites TJ Jr., et al. Sustained correction of glycogen storage disease type II using adeno-associated virus serotype 1 vectors. Gene Ther 2005;12: 1405–1409.

    Article  CAS  PubMed  Google Scholar 

  52. Mah C, Pacak CA, Cresawn KO, et al. Physiological correction of Pompe disease by systemic delivery of adeno-associated virus serotype 1 vectors. Mol Ther 2007;15: 501–507.

    Article  CAS  PubMed  Google Scholar 

  53. Sun B, Bird A, Young SP, Kishnani PS, Chen YT, Koeberl DD. Enhanced response to enzyme replacement therapy in Pompe disease after the induction of immune tolerance. Am J Hum Genet 2007;81: 1042–1049.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Ellinwood NM, Vite CH, Haskins ME. Gene therapy for lysosomal storage diseases: the lessons and promise of animal models. J Gene Med 2004;6: 481–506.

    Article  CAS  PubMed  Google Scholar 

  55. Koeberl DD, Kishnani PS, Chen YT. Glycogen storage disease types I and II: treatment updates. J Inherit Metab Dis 2007;30: 159–164.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Kiang A, Amalfitano A. Progress and problems when considering gene therapy for GSD-II. Acta Myol 2007;26: 49–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Hawes ML, Kennedy W, O’Callaghan MW, Thurberg BL. Differential muscular glycogen clearance after enzyme replacement therapy in a mouse model of Pompe disease. Mol Genet Metab 2007;91: 343–351.

    Article  CAS  PubMed  Google Scholar 

  58. Beck M. New therapeutic options for lysosomal storage disorders: enzyme replacement, small molecules and gene therapy. Hum Genet 2007;121: 1–22.

    Article  CAS  PubMed  Google Scholar 

  59. Parenti G, Zuppaldi A, Gabriela PM, et al. Pharmacological enhancement of mutated alpha-glucosidase activity in fibroblasts from patients with Pompe disease. Mol Ther 2007;15: 508–514.

    Article  CAS  PubMed  Google Scholar 

  60. Okumiya T, Kroos MA, Vliet LV, Takeuchi H, Van der Ploeg AT, Reuser AJ. Chemical chaperones improve transport and enhance stability of mutant alpha-glucosidases in glycogen storage disease type II. Mol Genet Metab 2007;90: 49–57.

    Article  CAS  PubMed  Google Scholar 

  61. Yoshimizu M, Tajima Y, Matsuzawa F, et al. Binding parameters and thermodynamics of the interaction of imino sugars with a recombinant human acid alpha-glucosidase (alglucosidase alfa): insight into the complex formation mechanism. Clin Chim Acta 2008;391: 68–73.

    Article  CAS  PubMed  Google Scholar 

  62. Kakavanos R, Hopwood JJ, Lang D, Meikle PJ, Brooks DA. Stabilising normal and mis-sense variant alpha-glucosidase. FEBS Lett 2006;580: 4365–4370.

    Article  CAS  PubMed  Google Scholar 

  63. Zhu Y, Li X, McVie-Wylie A, et al. Carbohydrate-remodeled acid alpha-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice. Biochem J 2005;389: 619–628.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Matalon R, Surendran S, Campbell GA, et al. Hyaluronidase increases the biodistribution of acid alpha-1,4 glucosidase in the muscle of Pompe disease mice: an approach to enhance the efficacy of enzyme replacement therapy. Biochem Biophys Res Commun 2006;350: 783–787.

    Article  CAS  PubMed  Google Scholar 

  65. Slonim AE, Coleman RA, McElligot MA, et al. Improvement of muscle function in acid maltase deficiency by high-protein therapy. Neurology 1983;33: 34–38.

    Article  CAS  PubMed  Google Scholar 

  66. Slonim AE, Bulone L, Goldberg T, et al. Modification of the natural history of adult-onset acid maltase deficiency by nutrition and exercise therapy. Muscle Nerve 2007;35: 70–77.

    Article  CAS  PubMed  Google Scholar 

  67. Slonim AE, Bulone L, Minikes J, et al. Benign course of glycogen storage disease type IIb in two brothers: nature or nurture? Muscle Nerve 2006;33: 571–574.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Raben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoser, B., Hill, V. & Raben, N. Therapeutic approaches in glycogen storage disease type II/pompe disease. Neurotherapeutics 5, 569–578 (2008). https://doi.org/10.1016/j.nurt.2008.08.009

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nurt.2008.08.009

Key Words

Navigation