Skip to main content
Log in

Effects of the position of internal histidine residues on the collision-induced fragmentation of triply protonated tryptic peptides

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

The collision-induced dissociation spectra of a series of synthetic, tryptic peptides that differed by the position of an internal histidine residue were studied. Electrospray ionization of these peptides produced both doubly and triply protonated molecular ions. Collision-induced fragmentation of the triply protonated peptide ions had better efficiency than that of the doubly protonated ions, producing a higher abundance of product ions at lower collision energies. The product ion spectra of these triply protonated ions were dominated by a series of doubly charged y-ions and the amount of sequence information was dependent on the position of the histidine residue. In the peptides where the histidine was located towards the C-terminus of the peptide, a more extensive series of sequence specific product ions was observed. As the position of the histidine residue was moved towards the N-terminus of the peptide, systematically less sequence information was observed. The peptides were subsequently modified with diethylpyrocarbonate to manipulate the product ion spectra. Addition of the ethoxyformyl group to the N-terminus and histidine residue shifted the predominant charge state of the modified peptide to the doubly protonated form. These peptide ions fragmented efficiently, producing product ion spectra that contained more sequence information than could be obtained from the corresponding unmodified peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yates, J. R., 3rd. Mass spectrometry and the age of the proteome. J. Mass Spectrom. 1998, 33, 1–19.

    Article  CAS  Google Scholar 

  2. Chambers, G.; Lawrie, L.; Cash, P.; Murray, G. I. Proteomics: A new approach to the study of disease. J. Pathol. 2000, 192, 280–288.

    Article  CAS  Google Scholar 

  3. Bichsel, V. E.; Liotta, L. A.; Petricoin, E. F., 3rd. Cancer proteomics: From biomarker discovery to signal pathway profiling. Cancer J. 2001, 7, 69–78.

    CAS  Google Scholar 

  4. Fields, S. Proteomics in genomeland. Science 2001, 291, 1221–1224.

    Article  CAS  Google Scholar 

  5. Godovac-Zimmermann, J.; Brown, L. R. Perspectives for mass spectrometry and functional proteomics. Mass Spectrom. Rev. 2001, 20, 1–57.

    Article  CAS  Google Scholar 

  6. Dongré, A. R.; Jones, J. L.; Somogyi, Á.; Wysocki, V. H. Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: Evidence for the mobile proton model. J. Am. Chem. Soc. 1996, 118, 8365–8374.

    Article  Google Scholar 

  7. Summerfield, S.; Gaskell, S. J. Fragmentation efficiencies of peptide ions following low energy collisional activation. Int. J. Mass Spectrom. Ion Processes 1997, 165/166, 509–521.

    Article  Google Scholar 

  8. Gu, C.; Somogyi, Á.; Wysocki, V. H.; Medzihradszky, D. F. Fragmentation of protonated oligopeptides XLDVLQ (X = L,H,K or R) by surface induced dissociation: Additional evidence for the mobile proton model. Anal. Chem. Acta 1999, 397, 247–256.

    Article  CAS  Google Scholar 

  9. Cox, K. A.; Gaskell, S. J.; Morris, M.; Whiting, A. Role of the site of protonation in the low-energy decompositions of gas-phase peptide ions. J. Am. Soc. Mass Spectrom. 1996, 7, 522–531.

    Article  CAS  Google Scholar 

  10. Nari, H.; Somogyi, Á.; Wysocki, V. H. Effect of alkyl substitution at the amide nitrogen on amid bond cleavage: Electrospray ionization/surface-induced dissociation fragmentation of substance P and two alkylated analogs. J. Mass Spectrom. 1996, 31, 1141–1148.

    Article  Google Scholar 

  11. Jones, J. L.; Dongré, A. R.; Somogyi, Á.; Wysocki, V. H. Sequence dependence of peptide fragmentation efficiency curves determined by electrospray ionization/surface-induced dissociation mass spectrometry. J. Am. Chem. Soc. 1994, 116, 8368–8369.

    Article  CAS  Google Scholar 

  12. Burlet, O.; Orkiszewski, R. S.; Ballard, K.; Gaskell, S. J. Charge promotion of low-energy fragmentations of peptide ions. Rapid Comm. Mass Spectrom. 1992, 6, 658–662.

    Article  CAS  Google Scholar 

  13. McCormack, A. L.; Somogyi, Á.; Dongré, A. R.; Wysocki, V. H. Fragmentation of protonated peptides: Surface-induced dissociation in conjunction with a quantum mechanical approach. Analyt. Chem. 1993, 65, 2859–2872.

    Article  CAS  Google Scholar 

  14. Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. Mobile and localized protons: A framework for understanding peptide dissociation. J. Mass Spectrom. 2000, 35, 1399–1406.

    Article  CAS  Google Scholar 

  15. Kinter, M.; Sherman, N. E. Protein Sequencing and Identification Using Tandem Mass Spectrometry; John Wiley & Sons, Inc: New York, 2000; pp 64–79.

    Google Scholar 

  16. Eng, J. K.; McCormack, A. L.; Yates, J. R., III. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 1994, 5, 976–989.

    Article  CAS  Google Scholar 

  17. Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20, 3551–3567.

    Article  CAS  Google Scholar 

  18. Harrison, A. G. The gas-phase basicities and proton affinities of amino acids and peptides. Mass Spectrom. Rev. 1997, 16, 201–217.

    Article  CAS  Google Scholar 

  19. Roth, K. D. W.; Huang, Z. H.; Sadagopan, N.; Watson, J. T. Charge derivatization of peptides for analysis by mass spectrometry. Mass Spectrom. Rev. 1998, 17, 255–274.

    Article  CAS  Google Scholar 

  20. Dikler, S.; Kelly, J. W.; Russell, D. H. Improving mass spectrometric sequencing of arginine-containing peptides by derivatization with acetylacetone. J. Mass Spectrom. 1997, 32, 1337–1349.

    Article  CAS  Google Scholar 

  21. Brancia, F. L.; Oliver, S. G.; Gaskell, S. J. Improved matrix-assisted laser desorption/ionization mass spectrometric analysis of tryptic hydrolysates of proteins following quanidation of lysine-containing peptides. Rapid Comm. Mass Spectrom. 2000, 14, 2070–2073.

    Article  CAS  Google Scholar 

  22. Summerfield, S.; Bolgar, M. S.; Gaskell, S. J. Promotion and stabilization of b1 ions in peptide phenylthiocarbamoyl derivatives: Analogies with condensed-phase chemistry. J. Mass Spectrom. 1997, 32, 225–231.

    Article  CAS  Google Scholar 

  23. Miles, E. W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977, 47, 431–442.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kinter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willard, B.B., Kinter, M. Effects of the position of internal histidine residues on the collision-induced fragmentation of triply protonated tryptic peptides. J Am Soc Mass Spectrom 12, 1262–1271 (2001). https://doi.org/10.1016/S1044-0305(01)00312-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(01)00312-9

Keywords

Navigation