Skip to main content

Advertisement

Log in

Application of biochar-based materials in environmental remediation: from multi-level structures to specific devices

  • Review
  • Published:
Biochar Aims and scope Submit manuscript

Abstract

The development of biochar has triggered a hot-spot in various research fields including agriculture, energy, environment, and materials. Biochar-based materials provide a novel approach against environmental challenging issues. Considering the rapid development of biochar materials, this review serves as a valuable platform to summarize the recent progress on the theoretical investigation and engineering applications of biochar materials in environmental remediation. For a better understanding of the structure–application relationships, the structural properties of biochar from macroscopic and microscopic aspects are summarized. The multilevel structures including elements, phases, surface chemistry, and molecular are highlighted to elucidate the multi-functional properties of biochars. Sorption, catalysis, redox reaction, and biological activity of biochar are briefly illustrated, which influence the transport, transformation, and removal of organic and inorganic pollutants in the environments. According to the multi-level structures and structure–application relationships of biochar, specific biochar-based materials and devices have been designed for practical environmental application. The important progress on the functionalization and device of biochar-based materials, including magnetic biochars, 2D and 3D biochar-based macrostructures, immobilized microorganism on biochar, and biochar-amended biofilters are highlighted. The environmental friendliness and sustainability of biochar-based materials, considering the whole cycle from synthesis to application, are evaluated.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdullah H, Wu HW (2009) Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy Fuel 23(8):4174–4181

    CAS  Google Scholar 

  • Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR (2018) Bacterial quorum sensing and microbial community interactions. MBio. https://doi.org/10.1128/mBio.02331-17

    Article  Google Scholar 

  • Abit SM, Bolster CH, Cai P, Walker SL (2012) Influence of feedstock and pyrolysis temperature of biochar amendments on transport of Escherichia coli in saturated and unsaturated soil. Environ Sci Technol 46(15):8097–8105

    CAS  Google Scholar 

  • Abiven S, Schmidt MWI, Lehmann J (2014) Biochar by design. Nat Geosci 7(5):326–327

    CAS  Google Scholar 

  • Alam MS, Gorman-Lewis D, Chen N, Flynn SL, Ok YS, Konhauser KO, Alessi DS (2018a) Thermodynamic analysis of Nickel(II) and Zinc(II) adsorption to biochar. Environ Sci Technol 52(11):6246–6255

    CAS  Google Scholar 

  • Alam MS, Gorman-Lewis D, Chen N, Safari S, Baek K, Konhauser KO, Alessi DS (2018b) Mechanisms of the removal of U(VI) from aqueous solution using biochar: a combined spectroscopic and modeling approach. Environ Sci Technol 52(22):13057–13067

    CAS  Google Scholar 

  • Albuquerque P, Casadevall A (2012) Quorum sensing in fungi—a review. Med Mycol 50(4):337–345

    CAS  Google Scholar 

  • Aller MF (2016) Biochar properties: transport, fate, and impact. Crit Rev Environ Sci Technol 46(14–15):1183–1296

    CAS  Google Scholar 

  • Ashoori N, Teixido M, Spahr S, LeFevre GH, Sedlak DL, Luthy RG (2019) Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff. Water Res 154:1–11

    CAS  Google Scholar 

  • Becker L, Bada JL, Winans RE, Hunt JE, Bunch TE, French BM (1994) Fullerenes in the 185-billion-year-old sudbury impact structure. Science 265(5172):642–645

    CAS  Google Scholar 

  • Bi H, Yin Z, Cao X, Xie X, Tan C, Huang X, Chen B, Chen F, Yang Q, Bu X, Lu X, Sun L, Zhang H (2013) Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents. Adv Mater 25(41):5916–5921

    CAS  Google Scholar 

  • Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy 28(3):386–396

    CAS  Google Scholar 

  • Byers JT, Lucas C, Salmond GPC, Welch M (2002) Nonenzymatic turnover of an Erwinia carotovora quorum-sensing signaling molecule. J Bacteriol 184(4):1163–1171

    CAS  Google Scholar 

  • Cai W, Wei J, Li Z, Liu Y, Zhou J, Han B (2019) Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr(VI) by a mild one-step hydrothermal method from peanut hull. Colloid Surface A 563:102–111

    CAS  Google Scholar 

  • Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428

    CAS  Google Scholar 

  • Cao XD, Ma LN, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43(9):3285–3291

    CAS  Google Scholar 

  • Cao XD, Ma LN, Liang Y, Gao B, Harris W (2011) Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol 45(11):4884–4889

    CAS  Google Scholar 

  • Cheah S, Malone SC, Feik CJ (2014) Speciation of sulfur in biochar produced from pyrolysis and gasification of oak and corn stover. Environ Sci Technol 48(15):8474–8480

    CAS  Google Scholar 

  • Chen B, Ding J (2012) Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium. J Hazard Mater 229–230:159–169

    Google Scholar 

  • Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42(14):5137–5143

    CAS  Google Scholar 

  • Chen B, Wang Y, Hu D (2010) Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi. J Hazard Mater 179(1–3):845–851

    CAS  Google Scholar 

  • Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102(2):716–723

    CAS  Google Scholar 

  • Chen B, Yuan M, Qian L (2012a) Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. J Soil Sediment 12(9):1350–1359

    CAS  Google Scholar 

  • Chen Z, Chen B, Chiou CT (2012b) Fast and slow rates of naphthalene sorption to biochars produced at different temperatures. Environ Sci Technol 46(20):11104–11111

    CAS  Google Scholar 

  • Chen Z, Chen B, Zhou D, Chen W (2012c) Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures. Environ Sci Technol 46(22):12476–12483

    CAS  Google Scholar 

  • Chen Z, Xiao X, Chen B, Zhu L (2015) Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures. Environ Sci Technol 49(1):309–317

    CAS  Google Scholar 

  • Chen DD, Chen CW, Hung CM (2017a) Synthesis of magnetic biochar from bamboo biomass to activate persulfate for the removal of polycyclic aromatic hydrocarbons in marine sediments. Bioresour Technol 245:188–195

    Google Scholar 

  • Chen M, Wang D, Yang F, Xu X, Xu N, Cao X (2017b) Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions. Environ Pollut 230:540–549

    CAS  Google Scholar 

  • Chen Q, Zheng J, Yang Q, Dang Z, Zhang L (2019a) Insights into the glyphosate adsorption behavior and mechanism by a MnFe2O4@cellulose-activated carbon magnetic hybrid. ACS Appl Mater Interfaces 11(17):15478–15488

    CAS  Google Scholar 

  • Chen T, Zhang J, Li M, Ge H, Li Y, Duan T, Zhu W (2019b) Biomass-derived composite aerogels with novel structure for removal/recovery of uranium from simulated radioactive wastewater. Nanotechnology 30(45):455602

    CAS  Google Scholar 

  • Chen W, Meng J, Han X, Lan Y, Zhang W (2019c) Past, present, and future of biochar. Biochar 1(1):75–87

    Google Scholar 

  • Chen Z, Xiao X, Xing B, Chen B (2019d) pH-dependent sorption of sulfonamide antibiotics onto biochars: sorption mechanisms and modeling. Environ Pollut 248:48–56

    CAS  Google Scholar 

  • Cheng S, Liu F, Shen C, Zhu C, Li A (2019) A green and energy-saving microwave-based method to prepare magnetic carbon beads for catalytic wet peroxide oxidation. J Clean Prod 215:232–244

    CAS  Google Scholar 

  • Chiou CT, Cheng J, Hung WN, Chen B, Lin TF (2015) Resolution of adsorption and partition components of organic compounds on black carbons. Environ Sci Technol 49(15):9116–9123

    CAS  Google Scholar 

  • Chu G, Zhao J, Chen FY, Dong XD, Zhou DD, Liang N, Wu M, Pan B, Steinberg CEW (2017) Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation. Environ Pollut 227:372–379

    CAS  Google Scholar 

  • Chuaphasuk C, Prapagdee B (2019) Effects of biochar-immobilized bacteria on phytoremediation of cadmium-polluted soil. Environ Sci Pollut Res 26(23):23679–23688

    CAS  Google Scholar 

  • Cornelissen G, Rutherford DW, Arp HPH, Dörsch P, Kelly CN, Rostad CE (2013) Sorption of pure N2O to biochars and other organic and inorganic materials under anhydrous conditions. Environ Sci Technol 47(14):7704–7712

    CAS  Google Scholar 

  • Covarrubias SA, de-Bashan LE, Moreno M, Bashan Y (2012) Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl Microbiol Biotechnol 93(6):2669–2680

    CAS  Google Scholar 

  • Creamer AE, Gao B (2016) Carbon-based adsorbents for postcombustion CO2 capture: a critical review. Environ Sci Technol 50(14):7276–7289

    CAS  Google Scholar 

  • Ding K, Xu W (2016) Black carbon facilitated dechlorination of DDT and its metabolites by sulfide. Environ Sci Technol 50(23):12976–12983

    CAS  Google Scholar 

  • Ding B, Huang S, Pang K, Duan Y, Zhang J (2017a) Nitrogen-enriched carbon nanofiber aerogels derived from marine chitin for energy storage and environmental remediation. ACS Sustain Chem Eng 6(1):177–185

    Google Scholar 

  • Ding Y, Liu YG, Liu SB, Huang XX, Li ZW, Tan XF, Zeng GM, Zhou L (2017b) Potential benefits of biochar in agricultural soils: a review. Pedosphere 27(4):645–661

    Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants: principles and perspectives. Bull Torrey Bot Club 36(4):viii

    Google Scholar 

  • Fang G, Gao J, Liu C, Dionysiou DD, Wang Y, Zhou D (2014a) Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation. Environ Sci Technol 48(3):1902–1910

    CAS  Google Scholar 

  • Fang Q, Chen B, Lin Y, Guan Y (2014b) Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ Sci Technol 48(1):279–288

    CAS  Google Scholar 

  • Fang G, Liu C, Gao J, Dionysiou DD, Zhou D (2015) Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environ Sci Technol 49(9):5645–5653

    CAS  Google Scholar 

  • Fernandes MB, Brooks P (2003) Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds. Chemosphere 53(5):447–458

    CAS  Google Scholar 

  • Frohlich AC, Foletto EL, Dotto GL (2019) Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J Clean Prod 229:828–837

    CAS  Google Scholar 

  • Fu H, Liu H, Mao J, Chu W, Li Q, Alvarez PJ, Qu X, Zhu D (2016) Photochemistry of dissolved black carbon released from biochar: reactive oxygen species generation and phototransformation. Environ Sci Technol 50(3):1218–1226

    CAS  Google Scholar 

  • Fu D, Singh RP, Yang X, Ojha CSP, Surampalli RY, Kumar AJ (2018) Sediment in situ bioremediation by immobilized microbial activated beads: pilot-scale study. J Environ Manag 226:62–69

    CAS  Google Scholar 

  • Fu H, Ma S, Zhao P, Xu S, Zhan S (2019) Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: structure dependence and mechanism. Chem Eng J 360:157–170

    CAS  Google Scholar 

  • Gao X, Wu H (2014) Aerodynamic properties of biochar particles: effect of grinding and implications. Environ Sci Technol Lett 1(1):60–64

    CAS  Google Scholar 

  • Gao X, Cheng HY, Del Valle I, Liu S, Masiello CA, Silberg JJ (2016) Charcoal disrupts soil microbial communication through a combination of signal sorption and hydrolysis. ACS Omega 1(2):226–233

    CAS  Google Scholar 

  • Garcia-Delgado C, Eymar E, Camacho-Arevalo R, Petruccioli M, Crognale S, D’Annibale A (2018) Degradation of tetracyclines and sulfonamides by stevensite- and biochar-immobilized laccase systems and impact on residual antibiotic activity. J Chem Technol Biotechnol 93(12):3394–3409

    CAS  Google Scholar 

  • Ghaffar A, Zhu X, Chen B (2018) Biochar composite membrane for high performance pollutant management: fabrication, structural characteristics and synergistic mechanisms. Environ Pollut 233:1013–1023

    CAS  Google Scholar 

  • Ghaffar A, Zhang L, Zhu X, Chen B (2019) Scalable graphene oxide membranes with tunable water channels and stability for ion rejection. Environ Sci Nano 6(3):904–915

    CAS  Google Scholar 

  • Grandclement C, Tannieres M, Morera S, Dessaux Y, Faure D (2016) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 40(1):86–116

    CAS  Google Scholar 

  • Grebel JE, Mohanty SK, Torkelson AA, Boehm AB, Higgins CP, Maxwell RM, Nelson KL, Sedlak DL (2013) Engineered infiltration systems for urban stormwater reclamation. Environ Eng Sci 30(8):437–454

    CAS  Google Scholar 

  • Guo J, Chen B (2014) Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components. Environ Sci Technol 48(16):9103–9112

    CAS  Google Scholar 

  • Haham H, Grinblat J, Sougrati MT, Stievano L, Margel S (2015) Engineering of iron-based magnetic activated carbon fabrics for environmental remediation. Materials 8(7):4593–4607

    CAS  Google Scholar 

  • Hale SE, Lehmann J, Rutherford D, Zimmerman AR, Bachmann RT, Shitumbanuma V, O’Toole A, Sundqvist KL, Arp HP, Cornelissen G (2012) Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ Sci Technol 46(5):2830–2838

    CAS  Google Scholar 

  • Han L, Chen B (2017) Generation mechanism and fate behaviors of environmental persistent free radicals. Prog Chem 29(9):1008–1020

    Google Scholar 

  • Han Z, Sani B, Mrozik W, Obst M, Beckingham B, Karapanagioti HK, Werner D (2015) Magnetite impregnation effects on the sorbent properties of activated carbons and biochars. Water Res 70:394–403

    CAS  Google Scholar 

  • Harvey OR, Herbert BE, Rhue RD, Kuo LJ (2011) Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environ Sci Technol 45(13):5550–5556

    CAS  Google Scholar 

  • He J, Song Y, Chen JP (2017) Development of a novel biochar/PSF mixed matrix membrane and study of key parameters in treatment of copper and lead contaminated water. Chemosphere 186:1033–1045

    CAS  Google Scholar 

  • Hu SJ, Zhang DN, Yang Y, Ran Y, Mao JD, Chu WY, Cao XY (2019) Effects of the chemical structure, surface, and micropore properties of activated and oxidized black carbon on the sorption and desorption of phenanthrene. Environ Sci Technol 53(13):7683–7693

    CAS  Google Scholar 

  • Huang Q, Song S, Chen Z, Hu B, Chen J, Wang X (2019) Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review. Biochar 1(1):45–73

    Google Scholar 

  • Idrees M, Jeelani S, Rangari V (2018) Three-dimensional-printed sustainable biochar-recycled PET composites. ACS Sustain Chem Eng 6(11):13940–13948

    CAS  Google Scholar 

  • Inchagcova KS, Duskaev GK, Deryabin DG (2019) Quorum sensing inhibition in Chromobacterium violaceum by amikacin combination with activated charcoal or small plant-derived molecules (pyrogallol and coumarin). Microbiology 88(1):63–71

    Google Scholar 

  • Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Pullammanappallil P, Ok YS, Cao X (2015) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46(4):406–433

    Google Scholar 

  • Jarvis JM, Page-Dumroese DS, Anderson NM, Corilo Y, Rodgers RP (2014) Characterization of fast pyrolysis products generated from several western USA woody species. Energy Fuels 28(10):6438–6446

    CAS  Google Scholar 

  • Jiang X, Xiang X, Hu H, Meng X, Hou L (2019) Facile fabrication of biochar/Al2O3 adsorbent and its application for fluoride removal from aqueous solution. J Chem Eng Data 64(1):83–89

    CAS  Google Scholar 

  • Jin J, Sun K, Yang Y, Wang Z, Han L, Wang X, Wu F, Xing B (2018) Comparison between soil- and biochar-derived humic acids: composition, conformation, and phenanthrene sorption. Environ Sci Technol 52(4):1880–1888

    CAS  Google Scholar 

  • Johannes L, Stephen J (2009) Biochar for environmental management: science and technology. Earthscan, London

    Google Scholar 

  • Jung KW, Lee S, Lee YJ (2017) Synthesis of novel magnesium ferrite (MgFe2O4)/biochar magnetic composites and its adsorption behavior for phosphate in aqueous solutions. Bioresour Technol 245:751–759

    CAS  Google Scholar 

  • Kang JK, Yi IG, Park JA, Kim SB, Kim H, Han Y, Kim PJ, Eom IC, Jo E (2015) Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: column experiments and model analyses. J Contam Hydrol 177–178:194–205

    Google Scholar 

  • Katam K, Bhattacharyya D (2019) Simultaneous treatment of domestic wastewater and bio-lipid synthesis using immobilized and suspended cultures of microalgae and activated sludge. J Ind Eng Chem 69:295–303

    CAS  Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4):1247–1253

    CAS  Google Scholar 

  • Khan S, Chao C, Waqas M, Arp HP, Zhu YG (2013) Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ Sci Technol 47(15):8624–8632

    CAS  Google Scholar 

  • Kim KH, Kim JY, Cho TS, Choi JW (2012) Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour Technol 118:158–162

    CAS  Google Scholar 

  • Klüpfel L, Keiluweit M, Kleber M, Sander M (2014) Redox properties of plant biomass-derived black carbon (biochar). Environ Sci Technol 48(10):5601–5611

    Google Scholar 

  • Kong XK, Chen CL, Chen QW (2014) Doped graphene for metal-free catalysis. Chem Soc Rev 43(8):2841–2857

    CAS  Google Scholar 

  • Lan Y, Yan N, Wang W (2016) Application of PDMS pervaporation membranes filled with tree bark biochar for ethanol/water separation. RSC Adv 6(53):47637–47645

    CAS  Google Scholar 

  • Lan Y, Yan N, Wang W (2018) Optimization of the PDMS/biochar nanocomposite membranes using the response surface methodology. Sci Eng Compos Mater 25(5):947–956

    CAS  Google Scholar 

  • Lau AY, Tsang DC, Graham NJ, Ok YS, Yang X, Li XD (2017) Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater. Chemosphere 169:89–98

    CAS  Google Scholar 

  • Le Brech Y, Raya J, Delmotte L, Brosse N, Gadiou R, Dufour A (2016) Characterization of biomass char formation investigated by advanced solid state NMR. Carbon 108:165–177

    Google Scholar 

  • Lee JW, Kidder M, Evans BR, Paik S, Buchanan AC, Garten CT, Brown RC (2010) Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol 44(20):7970–7974

    CAS  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447(7141):143–144

    CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43(9):1812–1836

    CAS  Google Scholar 

  • Lewis J, Miller M, Crumb J, Al-Sayaghi M, Buelke C, Tesser A, Alshami A (2019) Biochar as a filler in mixed matrix materials: synthesis, characterization, and applications. J Appl Polym Sci 136(41):48027

    Google Scholar 

  • Li F, Lu L, Zheng X, Ngo HH, Liang S, Guo W, Zhang X (2014) Enhanced nitrogen removal in constructed wetlands: effects of dissolved oxygen and step-feeding. Bioresour Technol 169:395–402

    CAS  Google Scholar 

  • Li H, Mahyoub SAA, Liao W, Xia S, Zhao H, Guo M, Ma P (2017) Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue. Bioresour Technol 223:20–26

    CAS  Google Scholar 

  • Li J, Fan J, Liu D, Hu Z, Zhang J (2019) Enhanced nitrogen removal in biochar-added surface flow constructed wetlands: dealing with seasonal variation in the north China. Environ Sci Pollut Res 26(4):3675–3684

    CAS  Google Scholar 

  • Li XP, Wang CB, Zhang JG, Liu JP, Liu B, Chen GY (2020) Preparation and application of magnetic biochar in water treatment: a critical review. Sci Total Environ 711:134847

    Google Scholar 

  • Lian F, Xing B (2017) Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk. Environ Sci Technol 51(23):13517–13532

    CAS  Google Scholar 

  • Lieke T, Zhang X, Steinberg CEW, Pan B (2018) Overlooked risks of biochars: persistent free radicals trigger neurotoxicity in Caenorhabditis elegans. Environ Sci Technol 52(14):7981–7987

    CAS  Google Scholar 

  • Lim JW, Mohd HF, Isa MH, Oh WD, Adnan R, Bashir M, Kiatkittipong W, Wang DK (2018) Shielding immobilized biomass cryogel beads with powdered activated carbon for the simultaneous adsorption and biodegradation of 4-chlorophenol. J Clean Prod 205:828–835

    CAS  Google Scholar 

  • Ling LL, Liu WJ, Zhang S, Jiang H (2017) Magnesium oxide embedded nitrogen self-doped biochar composites: fast and high-efficiency adsorption of heavy metals in an aqueous solution. Environ Sci Technol 51(17):10081–10089

    CAS  Google Scholar 

  • Liu WJ, Zeng FX, Jiang H, Yu HQ (2011) Total recovery of nitrogen and phosphorus from three wetland plants by fast pyrolysis technology. Bioresour Technol 102(3):3471–3479

    CAS  Google Scholar 

  • Liu WJ, Tian K, Jiang H, Yu HQ (2013) Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste. Sci Rep 3:2419

    Google Scholar 

  • Liu WJ, Jiang H, Yu HQ (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115(22):12251–12285

    CAS  Google Scholar 

  • Liu XQ, Ding HS, Wang YY, Liu WJ, Jiang H (2016) Pyrolytic temperature dependent and ash catalyzed formation of sludge char with ultra-high adsorption to 1-naphthol. Environ Sci Technol 50(5):2602–2609

    CAS  Google Scholar 

  • Liu WJ, Li WW, Jiang H, Yu HQ (2017) Fates of chemical elements in biomass during its pyrolysis. Chem Rev 117(9):6367–6398

    CAS  Google Scholar 

  • Liu G, Zheng H, Jiang Z, Zhao J, Wang Z, Pan B, Xing B (2018a) Formation and physicochemical characteristics of nano biochar: insight into chemical and colloidal stability. Environ Sci Technol 52(18):10369–10379

    CAS  Google Scholar 

  • Liu Y, Dai Q, Jin X, Dong X, Peng J, Wu M, Liang N, Pan B, Xing B (2018b) Negative impacts of biochars on urease activity: high pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals? Environ Sci Technol 52(21):12740–12747

    CAS  Google Scholar 

  • Liu H, Wei Y, Luo J, Li T, Wang D, Luo S, Crittenden JC (2019a) 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water. Chem Eng J 368:639–648

    CAS  Google Scholar 

  • Liu Y, Sohi SP, Liu S, Guan J, Zhou J, Chen J (2019b) Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar. J Environ Manag 235:276–281

    CAS  Google Scholar 

  • Lou L, Huang Q, Lou Y, Lu J, Hu B, Lin Q (2019) Adsorption and degradation in the removal of nonyiphenol from water by cells immobilized on biochar. Chemosphere 228:676–684

    CAS  Google Scholar 

  • Lu L, Chen B (2018) Enhanced bisphenol A removal from stormwater in biochar-amended biofilters: combined with batch sorption and fixed-bed column studies. Environ Pollut 243:1539–1549

    CAS  Google Scholar 

  • Lu L, Chen B (2020) Biochar-amendment-reduced cotransport of graphene oxide nanoparticles and dimethyl phthalate in saturated porous media. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135094

    Article  Google Scholar 

  • Lu L, Wang J, Chen B (2018) Adsorption and desorption of phthalic acid esters on graphene oxide and reduced graphene oxide as affected by humic acid. Environ Pollut 232:505–513

    CAS  Google Scholar 

  • Ma JF, Takahashi E, Ma JF, Takahashi E (2002) Soil, fertilizer and plant silicon research in Japan. Elsevier, Amsterdam

    Google Scholar 

  • Ma J, Alfe D, Michaelides A, Wang E (2009) Stone-wales defects in graphene and other planar sp(2)-bonded materials. Phys Rev B 80(3):033407

    Google Scholar 

  • Martin JW, Nyadong L, Ducati C, Manley-Harris M, Marshall AG, Kraft M (2019) Nanostructure of gasification charcoal (biochar). Environ Sci Technol 53(7):3538–3546

    CAS  Google Scholar 

  • Masek O, Buss W, Sohi S (2018) Standard biochar materials. Environ Sci Technol 52(17):9543–9544

    CAS  Google Scholar 

  • Masiello CA, Chen Y, Gao X, Liu S, Cheng HY, Bennett MR, Rudgers JA, Wagner DS, Zygourakis K, Silberg JJ (2013) Biochar and microbial signaling: production conditions determine effects on microbial communication. Environ Sci Technol 47(20):11496–11503

    CAS  Google Scholar 

  • Mia S, Dijkstra FA, Singh B (2017) Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium. Environ Sci Technol 51(15):8359–8367

    CAS  Google Scholar 

  • Mohan D, Sarswat A, Ok YS, Pittman CU Jr (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202

    CAS  Google Scholar 

  • Mohanty SK, Boehm AB (2014) Escherichia coli removal in biochar-augmented biofilter: effect of infiltration rate, initial bacterial concentration, biochar particle size, and presence of compost. Environ Sci Technol 48(19):11535–11542

    CAS  Google Scholar 

  • Mohanty SK, Cantrell KB, Nelson KL, Boehm AB (2014) Efficacy of biochar to remove Escherichia coli from stormwater under steady and intermittent flow. Water Res 61:288–296

    CAS  Google Scholar 

  • Mohanty SK, Valenca R, Berger AW, Yu IKM, Xiong X, Saunders TM, Tsang DCW (2018) Plenty of room for carbon on the ground: potential applications of biochar for stormwater treatment. Sci Total Environ 625:1644–1658

    CAS  Google Scholar 

  • Nakajima D, Nagame S, Kuramochi H, Sugita K, Kageyama S, Shiozaki T, Takemura T, Shiraishi F, Goto S (2007) Polycyclic aromatic hydrocarbon generation behavior in the process of carbonization of wood. Bull Environ Contam Toxicol 79(2):221–225

    CAS  Google Scholar 

  • Noraini MN, Abdullah EC, Othman R, Mubarak NM (2016) Single-route synthesis of magnetic biochar from sugarcane bagasse by microwave-assisted pyrolysis. Mater Lett 184:315–319

    CAS  Google Scholar 

  • Oleszczuk P, Cwikla-Bundyra W, Bogusz A, Skwarek E, Ok YS (2016) Characterization of nanoparticles of biochars from different biomass. J Anal Appl Pyrol 121:165–172

    CAS  Google Scholar 

  • Palansooriya KN, Wong JTF, Hashimoto Y, Huang L, Rinklebe J, Chang SX, Bolan N, Wang H, Ok YS (2019) Response of microbial communities to biochar-amended soils: a critical review. Biochar 1(1):3–22

    Google Scholar 

  • Park J, Yoo S, Lim KH, Rojas OJ, Hubbe MA, Park S (2019) Impact of oxidative carbonization on structure development of loblolly pine-derived biochar investigated by nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy. Diam Relat Mater 96:140–147

    CAS  Google Scholar 

  • Pietrzak R, Jurewicz K, Nowicki P, Babel K, Wachowska H (2010) Nitrogen-enriched bituminous coal-based active carbons as materials for supercapacitors. Fuel 89(11):3457–3467

    CAS  Google Scholar 

  • Qian L, Chen B (2013) Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles. Environ Sci Technol 47(15):8759–8768

    CAS  Google Scholar 

  • Qian L, Chen B (2014) Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process. J Agric Food Chem 62(2):373–380

    CAS  Google Scholar 

  • Qian LB, Yuan MX, Chen BL (2012) Research progress about bioremediation of polycyclic aromatic hydrocarbons contaminated soil with immobilized microorganism technique. Huanjing Kexue/Environ Sci 33(5):1767–1776

    CAS  Google Scholar 

  • Qian L, Chen B, Hu D (2013) Effective alleviation of aluminum phytotoxicity by manure-derived biochar. Environ Sci Technol 47(6):2737–2745

    CAS  Google Scholar 

  • Qiao J, Yu H, Wang X, Li F, Wang Q, Yuan Y, Liu C (2019) The applicability of biochar and zero-valent iron for the mitigation of arsenic and cadmium contamination in an alkaline paddy soil. Biochar 1(2):203–212

    Google Scholar 

  • Qiu Y, Zheng Z, Zhou Z, Sheng GD (2009) Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresour Technol 100(21):5348–5351

    CAS  Google Scholar 

  • Raclavska H, Corsaro A, Juchelkova D, Sassmanova V, Frantik J (2015) Effect of temperature on the enrichment and volatility of 18 elements during pyrolysis of biomass, coal, and tires. Fuel Process Technol 131:330–337

    CAS  Google Scholar 

  • Rajapaksha AU, Chen SS, Tsang DC, Zhang M, Vithanage M, Mandal S, Gao B, Bolan NS, Ok YS (2016) Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148:276–291

    CAS  Google Scholar 

  • Rawal A, Joseph SD, Hook JM, Chia CH, Munroe PR, Donne S, Lin Y, Phelan D, Mitchell DR, Pace B, Horvat J, Webber JB (2016) Mineral-biochar composites: molecular structure and porosity. Environ Sci Technol 50(14):7706–7714

    CAS  Google Scholar 

  • Saxena M, Maity S, Sarkar S (2014) Carbon nanoparticles in biochar boost wheat (Triticum aestivum) plant growth. RSC Adv 4(75):39948

    CAS  Google Scholar 

  • Selimoglu SM, Elibol M (2010) Alginate as an immobilization material for MAb production via encapsulated hybridoma cells. Crit Rev Biotechnol 30(2):145–159

    CAS  Google Scholar 

  • Shen Y, Zhuang L, Zhang J, Fan J, Yang T, Sun S (2019) A study of ferric-carbon micro-electrolysis process to enhance nitrogen and phosphorus removal efficiency in subsurface flow constructed wetlands. Chem Eng J 359:706–712

    CAS  Google Scholar 

  • Sheng HJ, Wang F, Gu CG, Stedtfeld R, Bian YR, Liu GX, Wu W, Jiang X (2018) Sorption characteristics of N-acyl homserine lactones as signal molecules in natural soils based on the analysis of kinetics and isotherms. RSC Adv 8(17):9364–9374

    CAS  Google Scholar 

  • Si Y, Wang X, Yan C, Yang L, Yu J, Ding B (2016) Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv Mater 28(43):9512–9518

    CAS  Google Scholar 

  • Sigmund G, Huber D, Bucheli TD, Baumann M, Borth N, Guebitz GM, Hofmann T (2017) Cytotoxicity of biochar: a workplace safety concern? Environ Sci Technol Lett 4(9):362–366

    CAS  Google Scholar 

  • Singh R, Singh P, Singh H, Raghubanshi AS (2019) Impact of sole and combined application of biochar, organic and chemical fertilizers on wheat crop yield and water productivity in a dry tropical agro-ecosystem. Biochar 1(2):229–235

    Google Scholar 

  • Song XY, Li Y, Yue X, Hussain Q, Zhang JJ, Liu QH, Jin SA, Cui DJ (2019) Effect of cotton straw-derived materials on native soil organic carbon. Sci Total Environ 663:38–44

    CAS  Google Scholar 

  • Spokas KA, Novak JM, Masiello CA, Johnson MG, Colosky EC, Ippolito JA, Trigo C (2014) Physical disintegration of biochar: an overlooked process. Environ Sci Technol Lett 1(8):326–332

    CAS  Google Scholar 

  • Suliman W, Harsh JB, Fortuna AM, Garcia-Pérez M, Abu-Lail NI (2017) Quantitative effects of biochar oxidation and pyrolysis temperature on the transport of pathogenic and nonpathogenic Escherichia coli in biochar-amended sand columns. Environ Sci Technol 51(9):5071–5081

    CAS  Google Scholar 

  • Sun K, Ro K, Guo M, Novak J, Mashayekhi H, Xing B (2011) Sorption of bisphenol A, 17alpha-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresour Technol 102(10):5757–5763

    CAS  Google Scholar 

  • Sun H, Hockaday WC, Masiello CA, Zygourakis K (2012) Multiple controls on the chemical and physical structure of biochars. Ind Eng Chem Res 51(9):3587–3597

    CAS  Google Scholar 

  • Sun K, Kang M, Zhang Z, Jin J, Wang Z, Pan Z, Xu D, Wu F, Xing B (2013) Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene. Environ Sci Technol 47(20):11473–11481

    CAS  Google Scholar 

  • Taheran M, Naghdi M, Brar SK, Knystautas E, Verma M, Surampalli RY, Valero JR (2016) Development of adsorptive membranes by confinement of activated biochar into electrospun nanofibers. Beilstein J Nanotechnol 7:1556–1563

    CAS  Google Scholar 

  • Taheran M, Naghdi M, Brar SK, Knystautas EJ, Verma M, Surampalli RY (2017) Degradation of chlortetracycline using immobilized laccase on polyacrylonitrile-biochar composite nanofibrous membrane. Sci Total Environ 605:315–321

    Google Scholar 

  • Tan XF, Liu YG, Gu YL, Xu Y, Zeng GM, Hu XJ, Liu SB, Wang X, Liu SM, Li J (2016) Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour Technol 212:318–333

    CAS  Google Scholar 

  • Tang X, Yang Y, Tao R, Chen P, Dai Y, Jin C, Feng X (2016) Fate of mixed pesticides in an integrated recirculating constructed wetland (IRCW). Sci Total Environ 571:935–942

    CAS  Google Scholar 

  • Teixidó M, Pignatello JJ, Beltrán JL, Granados M, Peccia J (2011) Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ Sci Technol 45(23):10020–10027

    Google Scholar 

  • Uchimiya M, Hiradate S, Antal MJ (2015) Dissolved phosphorus speciation of flash carbonization, slow pyrolysis, and fast pyrolysis biochars. ACS Sustain Chem Eng 3(7):1642–1649

    CAS  Google Scholar 

  • Ulrich BA, Loehnert M, Higgins CP (2017) Improved contaminant removal in vegetated stormwater biofilters amended with biochar. Environ Sci Water Res 3(4):726–734

    CAS  Google Scholar 

  • Vithanage M, Herath I, Joseph S, Bundschuh J, Bolan N, Ok YS, Kirkham MB, Yadav AK (2017) Interaction of arsenic with biochar in soil and water: a critical review. Carbon 113:219–230

    CAS  Google Scholar 

  • Wang D, Zhang W, Hao X, Zhou D (2012) Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size. Environ Sci Technol 47(2):821–828

    Google Scholar 

  • Wang D, Zhang W, Zhou D (2013) Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand. Environ Sci Technol 47(10):5154–5161

    CAS  Google Scholar 

  • Wang X, Hong J, Huang A, Zhong S, Tian Y (2014) Facile synthesis of mesoporous carbon microspheres with FePt nanoparticles via an in situ one pot method. Mater Lett 130:192–194

    CAS  Google Scholar 

  • Wang C, Li Y, He X, Ding Y, Peng Q, Zhao W, Shi E, Wu S, Cao A (2015a) Cotton-derived bulk and fiber aerogels grafted with nitrogen-doped graphene. Nanoscale 7(17):7550–7558

    CAS  Google Scholar 

  • Wang S, Gao B, Li Y, Wan Y, Creamer AE (2015b) Sorption of arsenate onto magnetic iron–manganese (Fe–Mn) biochar composites. RSC Adv 5(83):67971–67978

    CAS  Google Scholar 

  • Wang Z, Liu G, Zheng H, Li F, Ngo HH, Guo W, Liu C, Chen L, Xing B (2015c) Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour Technol 177:308–317

    CAS  Google Scholar 

  • Wang Y, Sun G, Dai J, Chen G, Morgenstern J, Wang Y, Kang S, Zhu M, Das S, Cui L, Hu L (2016a) A high-performance, low-tortuosity wood-carbon monolith reactor. Adv Mater 29(2):1604257

    Google Scholar 

  • Wang Z, Jin P, Wang M, Wu G, Dong C, Wu A (2016b) Biomass-derived porous carbonaceous aerogel as sorbent for oil-spill remediation. ACS Appl Mater Interfaces 8(48):32862–32868

    CAS  Google Scholar 

  • Wang S, Gao B, Li Y, Creamer AE, He F (2017) Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: batch and continuous flow tests. J Hazard Mater 322:172–181

    CAS  Google Scholar 

  • Wang S, Guo W, Gao F, Wang Y, Gao Y (2018a) Lead and uranium sorptive removal from aqueous solution using magnetic and nonmagnetic fast pyrolysis rice husk biochars. RSC Adv 8(24):13205–13217

    CAS  Google Scholar 

  • Wang Y, Xiao X, Chen B (2018b) Biochar impacts on soil silicon dissolution kinetics and their interaction mechanisms. Sci Rep 8(1):8040

    Google Scholar 

  • Wang C, Gu L, Ge S, Liu X, Zhang X, Chen X (2019a) Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil. Environ Technol 40(18):2345–2353

    CAS  Google Scholar 

  • Wang S, Ma S, Shan J, Xia Y, Lin J, Yan X (2019b) A 2-year study on the effect of biochar on methane and nitrous oxide emissions in an intensive rice–wheat cropping system. Biochar 1(2):177–186

    Google Scholar 

  • Wen P, Wu Z, Han Y, Cravotto G, Wang J, Ye BC (2017) Microwave-assisted synthesis of a novel biochar-based slow-release nitrogen fertilizer with enhanced water-retention capacity. ACS Sustain Chem Eng 5(8):7374–7382

    CAS  Google Scholar 

  • Weng Z, Van Zwieten L, Singh BP, Tavakkoli E, Joseph S, Macdonald LM, Rose TJ, Rose MT, Kimber SWL, Morris S, Cozzolino D, Araujo JR, Archanjo BS, Cowie A (2017) Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nat Clim Change 7(5):371–376

    CAS  Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1(5):1–9

    Google Scholar 

  • Wu S, Wu H (2019) Incorporating biochar into wastewater eco-treatment systems: popularity, reality, and complexity. Environ Sci Technol 53(7):3345–3346

    CAS  Google Scholar 

  • Wu XL, Wen T, Guo HL, Yang S, Wang X, Xu AW (2013a) Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7(4):3589–3597

    CAS  Google Scholar 

  • Wu ZY, Li C, Liang HW, Chen JF, Yu SH (2013b) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem Int Ed Engl 52(10):2925–2929

    CAS  Google Scholar 

  • Wu B, Cheng GG, Jiao K, Shi WJ, Wang C, Xu H (2016) Mycoextraction by Clitocybe maxima combined with metal immobilization by biochar and activated carbon in an aged soil. Sci Total Environ 562:732–739

    CAS  Google Scholar 

  • Wu J, Huang D, Liu X, Meng J, Tang C, Xu J (2018) Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar. J Hazard Mater 348:10–19

    CAS  Google Scholar 

  • Wu P, Ata-Ul-Karim ST, Singh BP, Wang H, Wu T, Liu C, Fang G, Zhou D, Wang Y, Chen W (2019) A scientometric review of biochar research in the past 20 years (1998–2018). Biochar 1(1):23–43

    Google Scholar 

  • Wu Z, Chen X, Yuan B, Fu M (2020) A facile foaming-polymerization strategy to prepare 3D MnO2 modified biochar-based porous hydrogels for efficient removal of Cd(II) and Pb(II). Chemosphere 239:124745

    CAS  Google Scholar 

  • Xiao X, Chen B (2017) A direct observation of the fine aromatic clusters and molecular structures of biochars. Environ Sci Technol 51(10):5473–5482

    CAS  Google Scholar 

  • Xiao X, Chen B, Zhu L (2014) Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environ Sci Technol 48(6):3411–3419

    CAS  Google Scholar 

  • Xiao X, Chen Z, Chen B (2016) H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials. Sci Rep. https://doi.org/10.1038/srep22644

    Article  Google Scholar 

  • Xiao X, Chen B, Zhu L, Schnoor JL (2017a) Sugar cane-converted graphene-like material for the superhigh adsorption of organic pollutants from water via coassembly mechanisms. Environ Sci Technol 51(21):12644–12652

    CAS  Google Scholar 

  • Xiao X, Ulrich BA, Chen B, Higgins CP (2017b) Sorption of poly- and perfluoroalkyl substances (PFASs) relevant to aqueous film-forming foam (AFFF)-impacted groundwater by biochars and activated carbon. Environ Sci Technol 51(11):6342–6351

    CAS  Google Scholar 

  • Xiao X, Chen B, Chen Z, Zhu L, Schnoor JL (2018) Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review. Environ Sci Technol 52(9):5027–5047

    CAS  Google Scholar 

  • Xie T, Reddy KR, Wang C, Yargicoglu E, Spokas K (2015) Characteristics and applications of biochar for environmental remediation: a review. Crit Rev Environ Sci Technol 45(9):939–969

    CAS  Google Scholar 

  • Xu Y, Chen B (2013) Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol 146:485–493

    CAS  Google Scholar 

  • Xu W, Pignatello JJ, Mitch WA (2015) Reduction of nitroaromatics sorbed to black carbon by direct reaction with sorbed sulfides. Environ Sci Technol 49(6):3419–3426

    CAS  Google Scholar 

  • Xu X, Huang D, Zhao L, Kan Y, Cao X (2016) Role of inherent inorganic constituents in SO2 sorption ability of biochars derived from three biomass wastes. Environ Sci Technol 50(23):12957–12965

    CAS  Google Scholar 

  • Xu L, Yu W, Graham N, Zhao Y, Qu J (2019) Application of integrated bioelectrochemical-wetland systems for future sustainable wastewater treatment. Environ Sci Technol 53(4):1741–1743

    CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788

    CAS  Google Scholar 

  • Yang J, Pan B, Li H, Liao S, Zhang D, Wu M, Xing B (2016a) Degradation of p-nitrophenol on biochars: role of persistent free radicals. Environ Sci Technol 50(2):694–700

    CAS  Google Scholar 

  • Yang J, Zhao Y, Ma S, Zhu B, Zhang J, Zheng C (2016b) Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust. Environ Sci Technol 50(21):12040–12047

    CAS  Google Scholar 

  • Yang J, Pignatello JJ, Pan B, Xing B (2017a) Degradation of p-nitrophenol by lignin and cellulose chars: H2O2-mediated reaction and direct reaction with the char. Environ Sci Technol 51(16):8972–8980

    CAS  Google Scholar 

  • Yang K, Zhu X, Chen B (2017b) Facile fabrication of freestanding all-carbon activated carbon membranes for high-performance and universal pollutant management. J Mater Chem A 5(38):20316–20326

    CAS  Google Scholar 

  • Yang L, Gao J, Liu Y, Zhang Z, Zou M, Liao Q, Shang J (2018) Removal of methyl orange from water using sulfur-modified nZVI supported on biochar composite. Water Air Soil Pollut. https://doi.org/10.1007/s11270-018-3992-x

    Article  Google Scholar 

  • Yao Y, Gao B, Chen J, Yang L (2013) Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environ Sci Technol 47(15):8700–8708

    CAS  Google Scholar 

  • Yap MW, Mubarak NM, Sahu JN, Abdullah EC (2017) Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater. J Ind Eng Chem 45:287–295

    CAS  Google Scholar 

  • Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Camara M, Smith H, Williams P (2002) N-acylhomoserine Lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70(10):5635–5646

    CAS  Google Scholar 

  • Yi Y, Huang Z, Lu B, Xian J, Tsang EP, Cheng W, Fang J, Fang Z (2020) Magnetic biochar for environmental remediation: a review. Bioresour Technol 298:122468

    Google Scholar 

  • Yin A, Xu F, Zhang X (2016) Fabrication of biomass-derived carbon aerogels with high adsorption of oils and organic solvents: effect of hydrothermal and post-pyrolysis processes. Materials (Basel). https://doi.org/10.3390/ma9090758

    Article  Google Scholar 

  • Yue X, Zhang T, Yang D, Qiu F, Li Z (2018) Hybrid aerogels derived from banana peel and waste paper for efficient oil absorption and emulsion separation. J Clean Prod 199:411–419

    CAS  Google Scholar 

  • Yue L, Lian F, Han Y, Bao Q, Wang Z, Xing B (2019) The effect of biochar nanoparticles on rice plant growth and the uptake of heavy metals: implications for agronomic benefits and potential risk. Sci Total Environ 656:9–18

    CAS  Google Scholar 

  • Zhang W, Niu JZ, Morales VL, Chen XC, Hay AG, Lehmann J, Steenhuis TS (2010) Transport and retention of biochar particles in porous media: effect of pH, ionic strength, and particle size. Ecohydrology 3(4):497–508

    CAS  Google Scholar 

  • Zhang X, Sarmah AK, Bolan NS, He L, Lin X, Che L, Tang C, Wang H (2016) Effect of aging process on adsorption of diethyl phthalate in soils amended with bamboo biochar. Chemosphere 142:28–34

    CAS  Google Scholar 

  • Zhang H, Xue G, Chen H, Li X (2018a) Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment. Chemosphere 191:64–71

    CAS  Google Scholar 

  • Zhang K, Chen B, Mao J, Zhu L, Xing B (2018b) Water clusters contributed to molecular interactions of ionizable organic pollutants with aromatized biochar via pi-PAHB: sorption experiments and DFT calculations. Environ Pollut 240:342–352

    CAS  Google Scholar 

  • Zhang L, Chen B, Ghaffar A, Zhu X (2018c) Nanocomposite membrane with polyethylenimine-grafted graphene oxide as a novel additive to enhance pollutant filtration performance. Environ Sci Technol 52(10):5920–5930

    CAS  Google Scholar 

  • Zhang K, Mao J, Chen B (2019) Reconsideration of heterostructures of biochars: morphology, particle size, elemental composition, reactivity and toxicity. Environ Pollut 254:113017

    CAS  Google Scholar 

  • Zhao HQ, Huang SQ, Xu WQ, Wang YR, Wang YX, He CS, Mu Y (2019) Undiscovered mechanism for pyrogenic carbonaceous matter-mediated abiotic transformation of azo dyes by sulfide. Environ Sci Technol 53(8):4397–4405

    CAS  Google Scholar 

  • Zhong D, Zhang Y, Wang L, Chen J, Jiang Y, Tsang D, Zhao Z, Ren S, Liu Z, Crittenden JC (2018) Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: key roles of Fe3O4 and persistent free radicals. Environ Pollut 243(B):1302–1309

    CAS  Google Scholar 

  • Zhong D, Jiang Y, Zhao Z, Wang L, Chen J, Ren S, Crittenden JC (2019) pH dependence of arsenic oxidation by rice-husk-derived biochar: roles of redox-active moieties. Environ Sci Technol 53(15):9034–9044

    CAS  Google Scholar 

  • Zhou Y, Gao B, Zimmerman AR, Chen H, Zhang M, Cao X (2014) Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour Technol 152:538–542

    CAS  Google Scholar 

  • Zhou Z, Du C, Li T, Shen Y, Zeng Y, Du J, Zhou J (2015) Biodegradation of a biochar-modified waterborne polyacrylate membrane coating for controlled-release fertilizer and its effects on soil bacterial community profiles. Environ Sci Pollut Res 22(11):8672–8682

    CAS  Google Scholar 

  • Zhou X, Wang X, Zhang H, Wu H (2017) Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland. Bioresour Technol 241:269–275

    CAS  Google Scholar 

  • Zhou X, Gao L, Zhang H, Wu H (2018a) Determination of the optimal aeration for nitrogen removal in biochar-amended aerated vertical flow constructed wetlands. Bioresour Technol 261:461–464

    CAS  Google Scholar 

  • Zhou X, Jia L, Liang C, Feng L, Wang R, Wu H (2018b) Simultaneous enhancement of nitrogen removal and nitrous oxide reduction by a saturated biochar-based intermittent aeration vertical flow constructed wetland: effects of influent strength. Chem Eng J 334:1842–1850

    CAS  Google Scholar 

  • Zhou Z, Chen B, Qu X, Fu H, Zhu D (2018c) Dissolved black carbon as an efficient sensitizer in the photochemical transformation of 17β-Estradiol in aqueous solution. Environ Sci Technol 52(18):10391–10399

    CAS  Google Scholar 

  • Zhu Y, Kockrick E, Kaskel S, Ikoma T, Hanagata N (2009) Nanocasting route to ordered mesoporous carbon with FePt nanoparticles and its phenol adsorption property. J Phys Chem C 113(15):5998–6002

    CAS  Google Scholar 

  • Zhu S, Ho SH, Huang X, Wang D, Yang F, Wang L, Wang C, Cao X, Ma F (2017a) Magnetic nanoscale zerovalent iron assisted biochar: interfacial chemical behaviors and heavy metals remediation performance. ACS Sustain Chem Eng 5(11):9673–9682

    CAS  Google Scholar 

  • Zhu X, Chen B, Zhu L, Xing B (2017b) Effects and mechanisms of biochar–microbe interactions in soil improvement and pollution remediation: a review. Environ Pollut 227:98–115

    CAS  Google Scholar 

  • Zhu X, Yang K, Chen B (2017c) Membranes prepared from graphene-based nanomaterials for sustainable applications: a review. Environ Sci Nano 4(12):2267–2285

    CAS  Google Scholar 

  • Zhu S, Huang X, Ma F, Wang L, Duan X, Wang S (2018) Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms. Environ Sci Technol 52(15):8649–8658

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundations of China (21621005, and 21537005, 21425730), and the National Key Technology Research and Development Program of China (2018YFC1800705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoliang Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Yu, W., Wang, Y. et al. Application of biochar-based materials in environmental remediation: from multi-level structures to specific devices. Biochar 2, 1–31 (2020). https://doi.org/10.1007/s42773-020-00041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42773-020-00041-7

Keywords

Navigation