Skip to main content

New Trends in Biochar–Mineral Composites

  • Chapter
  • First Online:
Biochar and its Composites

Abstract

The use of biochar–mineral composites has been rapidly developed, supplying numerous benefits to environmental applications including soil and water remediation, specifically assisting in wastewater treatment. They offer an advantageous diversity of shapes, micro- and nanosized particles, and functional groups. Therefore, biochar–minerals are used to absorb, retain, and degrade toxic metals and emerging organic contaminants. Moreover, environmental microorganisms can improve their performance in a synergic way. Current knowledge in nanotechnology and biotechnology enables new approaches for developing and using biochar–mineral composites. This chapter describes how researchers have taken advantage of these new tools. Also, the authors aim to highlight those examples of biochar–mineral-based composites that demonstrate multifunctional performance and a remarkable capacity to solve current environmental issues.

Javier Sartuqui and Noelia L. D’Elía contributed  equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imran M, Khan ZUH, Iqbal MM, Iqbal J, Shah NS, Munawar S, Ali S, Murtaza B, Naeem MA, Rizwan M (2020) Effect of biochar modified with magnetite nanoparticles and HNO3 for efficient removal of Cr(VI) from contaminated water: a batch and column scale study. Environ Pollut 261:114231. https://doi.org/10.1016/j.envpol.2020.114231

  2. Iqbal A, Mushtaq MU, Khan AHA, Nawaz I, Yousaf S, Zeshan M, Iqbal M (2020) Influence of pseudomonas japonica and organic amendments on the growth and metal tolerance of Celosia argentea L. Environ Sci Pollut Res 27(20):24671–24685. https://doi.org/10.1007/s11356-019-06181-z

    Article  CAS  Google Scholar 

  3. Tu C, Wei J, Guan F, Liu Y, Sun Y, Luo Y (2020) Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environ Int 137:105576. https://doi.org/10.1016/j.envint.2020.105576

  4. Batool M, Khan WD, Hamid Y, Farooq MA, Naeem MA, Nadeem F (2022) Interaction of pristine and mineral engineered biochar with microbial community in attenuating the heavy metals toxicity: a review. Appl Soil Ecol 175(February):104444. https://doi.org/10.1016/j.apsoil.2022.104444

  5. Wang YY, You LC, Lyu HH, Liu YX, He LL, Hu YD, Luo FC, Yang SM (2022) Role of biochar–mineral composite amendment on the immobilization of heavy metals for Brassica chinensis from naturally contaminated soil. Environ Technol Innov 28. https://doi.org/10.1016/j.eti.2022.102622

  6. Ramola S, Belwal T, Li CJ, Wang YY, Lu HH, Yang SM, Zhou CH (2020) Improved lead removal from aqueous solution using novel porous bentonite—and calcite-biochar composite. Sci Total Environ 709:136171. https://doi.org/10.1016/j.scitotenv.2019.136171

    Article  CAS  Google Scholar 

  7. Ghidotti M, Fabbri D, Hornung A (2017) Profiles of volatile organic compounds in biochar: insights into process conditions and quality assessment. ACS Sustain Chem Eng 5(1):510–517. https://doi.org/10.1021/acssuschemeng.6b01869

    Article  CAS  Google Scholar 

  8. Vitkova J, Kondrlova E, Rodny M, Surda P, Horak J (2017) Analysis of soil water content and crop yield after biochar application in field conditions. Plant Soil Environ 63(12):569–573. https://doi.org/10.17221/564/2017-PSE

  9. Liang M, Yan L, Wang D, Cheng X, Deng Z, Xu S, Li S (2020) Novel iron manganese oxide modified mulberry biochar for the adsorption of phosphorus in aqueous solution. Desalin Water Treat 189:357–366. https://doi.org/10.5004/dwt.2020.25640

    Article  CAS  Google Scholar 

  10. Wang J, Wang S (2019) Preparation, modification and environmental application of biochar: a review. J Clean Prod 227:1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282

  11. Amin FR, Huang Y, He Y, Zhang R, Liu G, Chen C (2016) Biochar applications and modern techniques for characterization. Clean Technol Environ Policy 18(5):1457–1473. https://doi.org/10.1007/s10098-016-1218-8

    Article  CAS  Google Scholar 

  12. Lin R, Cheng J, Ding L, Murphy JD (2018) Improved efficiency of anaerobic digestion through direct interspecies electron transfer at mesophilic and thermophilic temperature ranges. Chem Eng J 350:681–691. https://doi.org/10.1016/j.cej.2018.05.173

  13. Verheijen F, Jeffery S, Bastos AC, Van Der Velde M, Diafas I (2010) Biochar application to soils: a critical scientific review of effects on soil properties, processes and functions. Environment 8(4). https://doi.org/10.2788/472

  14. Weber K, Quicker P (2018) Properties of biochar. Fuel 217:240–261. https://doi.org/10.1016/j.fuel.2017.12.054

  15. Kumar M, Xiong X, Wan Z, Sun Y, Tsang DCW, Gupta J, Gao B, Cao X, Tang J, Ok YS (2020) Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresour Technol 312:123613. https://doi.org/10.1016/j.biortech.2020.123613

  16. Amusat SO, Kebede TG, Dube S, Nindi MM (2021) Ball-milling synthesis of biochar and biochar–based nanocomposites and prospects for removal of emerging contaminants: a review. J Water Process Eng 41:101993. https://doi.org/10.1016/j.jwpe.2021.101993

  17. Ramanayaka S, Vithanage M, Alessi DS, Liu W-J, Jayasundera ACA, Ok YS (2020) Nanobiochar: production, properties, and multifunctional applications. Environ Sci Nano 7(11):3279–3302. https://doi.org/10.1039/D0EN00486C

    Article  CAS  Google Scholar 

  18. Chausali N, Saxena J, Prasad R (2021) Nanobiochar and biochar based nanocomposites: advances and applications. J Agric Food Res 5:100191. https://doi.org/10.1016/j.jafr.2021.100191

    Article  CAS  Google Scholar 

  19. Du Y, Lin W, Glarborg P (2021). Particulate emissions from a modern wood stove—influence of KCl. Renew Energy 170:1215–1227. https://doi.org/10.1016/j.renene.2021.02.048

  20. Amrane A, Mohan D, Nguyen TA, Assadi AA, Yasin G (2020) Nanomaterials for soil remediation. Elsevier

    Google Scholar 

  21. Liu G, Zheng H, Jiang Z, Zhao J, Wang Z, Pan B, Xing B (2018) Formation and physicochemical characteristics of nano biochar: insight into chemical and colloidal stability. Environ Sci Technol 52(18):10369–10379. https://doi.org/10.1021/acs.est.8b01481

    Article  CAS  Google Scholar 

  22. Song B, Cao X, Gao W, Aziz S, Gao S, Lam CH, Lin R (2022) Preparation of nano-biochar from conventional biorefineries for high-value applicationsRenew Sustain Energy Rev 157(2021):112057. https://doi.org/10.1016/j.rser.2021.112057

  23. Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72(2):243–248. https://doi.org/10.1016/j.jaap.2004.07.003

  24. Dong X, He L, Liu Y, Piao Y (2018) Preparation of highly conductive biochar nanoparticles for rapid and sensitive detection of 17β-estradiol in water. Electrochimica Acta 292:55–62. https://doi.org/10.1016/j.electacta.2018.09.129

  25. Lian F, Yu W, Zhou Q, Gu S, Wang Z, Xing B (2020) Size matters: nano-biochar triggers decomposition and transformation inhibition of antibiotic resistance genes in aqueous environments. Environ Sci Technol 54(14):8821–8829. https://doi.org/10.1021/acs.est.0c02227

    Article  CAS  Google Scholar 

  26. Lyu H, Gao B, He F, Zimmerman AR, Ding C, Huang H, & Tang, J. (2018). Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environ Pollut 233:54–63. https://doi.org/10.1016/j.envpol.2017.10.037

  27. Naghdi M, Taheran M, Brar SK, Rouissi T, Verma M, Surampalli RY, Valero JR (2017) A green method for production of nanobiochar by ball milling- optimization and characterization. J Clean Prod 164:1394–1405. https://doi.org/10.1016/j.jclepro.2017.07.084

  28. He L, Yang Y, Kim J, Yao L, Dong X, Li T, Piao Y (2020) Multi-layered enzyme coating on highly conductive magnetic biochar nanoparticles for bisphenol A sensing in water. Chem Eng J 384:123276. https://doi.org/10.1016/j.cej.2019.123276

  29. Xiao J, Hu R, Chen G (2020) Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II). J Hazard Maters 387:121980. https://doi.org/10.1016/j.jhazmat.2019.121980

  30. Hamid Y, Tang L, Hussain B, Usman M, Gurajala HK, Rashid MS, He Z, Yang X (2020) Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil. Environ Pollut 257:113609. https://doi.org/10.1016/j.envpol.2019.113609

  31. Gujre N, Soni A, Rangan L, Tsang DCW, Mitra S (2021) Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: a review. Environ Pollut 268:115549. https://doi.org/10.1016/j.envpol.2020.115549

  32. Horák J, Šimanský V, Igaz D (2019) Biochar and biochar with n fertilizer impact on soil physical properties in a silty loam haplic luvisol. J Ecol Eng 20(7):31–38. https://doi.org/10.12911/22998993/109857

  33. Wu Q, Xian Y, He Z, Zhang Q, Wu J, Yang G, Zhang X, Qi H, Ma J, Xiao Y, Long L (2019) Adsorption characteristics of Pb(II) using biochar derived from spent mushroom substrate. Sci Rep 9(1):15999. https://doi.org/10.1038/s41598-019-52554-2

    Article  CAS  Google Scholar 

  34. O’Brien P, Kortenkamp A (1995) The chemistry underlying chromate toxicity. Transition Met Chem 20(6):636–642. https://doi.org/10.1007/BF00136433

    Article  Google Scholar 

  35. Gescher J, Kappler A (2013) Microbial metal respiration. Springer

    Google Scholar 

  36. Hausladen DM, Fendorf S (2017) Hexavalent chromium generation within naturally structured soils and sediments. Environ Sci Technol 51(4):2058–2067. https://doi.org/10.1021/acs.est.6b04039

    Article  CAS  Google Scholar 

  37. Brookshaw DR, Coker VS, Lloyd JR, Vaughan DJ, Pattrick RAD (2014) Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite. Environ Sci Technol 48(19):11337–11342. https://doi.org/10.1021/es5031849

    Article  CAS  Google Scholar 

  38. Hu Y, Xue Q, Tang J, Fan X, Chen H (2019) New insights on Cr(VI) retention by ferrihydrite in the presence of Fe(II). Chemosphere 222:511–516. https://doi.org/10.1016/j.chemosphere.2019.01.160

  39. Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Yu H-Q, Fredrickson JK (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14(10):651–662. https://doi.org/10.1038/nrmicro.2016.93

    Article  CAS  Google Scholar 

  40. Papassiopi N, Pinakidou F, Katsikini M, Antipas GSE, Christou C, Xenidis A, Paloura EC (2014) A XAFS study of plain and composite iron(III) and chromium(III) hydroxides. Chemosphere 111:169–176. https://doi.org/10.1016/j.chemosphere.2014.03.059

  41. Wang Y, Chen S, Yang X, Wu Y, Huang X, He E, Qiu R, Wang S (2019) Enhanced removal of Cr(VI) in the Fe(III)/natural polyphenols system: role of the in situ generated Fe(II). J Hazard Mater 377:321–329. https://doi.org/10.1016/j.jhazmat.2019.05.083

  42. Dai C, Zuo X, Cao B, Hu Y (2016) Homogeneous and heterogeneous (Fex, Cr1–x)(OH)3 precipitation: implications for Cr sequestration. Environ Sci Technol 50(4):1741–1749. https://doi.org/10.1021/acs.est.5b04319

    Article  CAS  Google Scholar 

  43. Kong L, Gao Y, Zhou Q, Zhao X, Sun Z (2018) Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy. J Hazard Mater 343:276–284. https://doi.org/10.1016/j.jhazmat.2017.09.040

  44. Zhao H-Q, Liu Q, Wang Y-X, Han Z-Y, Chen Z-G, Mu Y (2018) Biochar enhanced biological nitrobenzene reduction with a mixed culture in anaerobic systems: short-term and long-term assessments. Chem Eng J 351:912–921. https://doi.org/10.1016/j.cej.2018.06.154

  45. Kappler A, Wuestner ML, Ruecker A, Harter J, Halama M, Behrens S (2014) Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environ Sci Technol Lett 1(8):339–344. https://doi.org/10.1021/ez5002209

    Article  CAS  Google Scholar 

  46. Xu S, Adhikari D, Huang R, Zhang H, Tang Y, Roden E, Yang Y (2016) Biochar-facilitated microbial reduction of hematite. Environ Sci Technol 50(5):2389–2395. https://doi.org/10.1021/acs.est.5b05517

    Article  CAS  Google Scholar 

  47. Li R, Wang JJ, Gaston LA, Zhou B, Li M, Xiao R, Wang Q, Zhang Z, Huang H, Liang W, Huang H, Zhang X (2018) An overview of carbothermal synthesis of metal–biochar composites for the removal of oxyanion contaminants from aqueous solution. Carbon 129:674–687. https://doi.org/10.1016/j.carbon.2017.12.070

  48. Sun Y, Yu IKM, Tsang DCW, Cao X, Lin D, Wang L, Graham NJD, Alessi DS, Komárek M, Ok YS, Feng Y, Li X-D (2019) Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. Environ Int 124:521–532. https://doi.org/10.1016/j.envint.2019.01.047

  49. Tan X, Liu Y, Gu Y, Xu Y, Zeng G, Hu X, Liu S, Wang X, Liu S, Li J (2016) Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour Technol 212:318–333. https://doi.org/10.1016/j.biortech.2016.04.093

  50. Liu L, Liu G, Zhou J, Wang J, Jin R, Wang A (2016) Improved bioreduction of nitrobenzene by black carbon/biochar derived from crop residues. RSC Adv 6(87):84388–84396. https://doi.org/10.1039/C6RA11671J

    Article  CAS  Google Scholar 

  51. Liu L, Liu G, Zhou J, Jin R (2021) Interaction between hexavalent chromium and biologically formed iron mineral-biochar composites: kinetics, products and mechanisms. J Hazard Mater 405(July 2020):124246. https://doi.org/10.1016/j.jhazmat.2020.124246

  52. Zhou G-W, Yang X-R, Marshall CW, Li H, Zheng B-X, Yan Y, Su J-Q, Zhu Y-G (2017) Biochar addition increases the rates of dissimilatory iron reduction and methanogenesis in ferrihydrite enrichments. Front Microbiol 8:589

    Article  Google Scholar 

  53. Zhang X, Wells M, Niazi NK, Bolan N, Shaheen S, Hou D, Gao B, Wang H, Rinklebe J, Wang Z (2022) Nanobiochar-rhizosphere interactions: implications for the remediation of heavy-metal contaminated soils. Environ Pollut 299(2021). https://doi.org/10.1016/j.envpol.2022.118810

  54. Mai NT, Nguyen AM, Pham NTT, Nguyen ATQ, Nguyen TT, Do CL, Nguyen NH, Dultz S, Nguyen MN (2020) Colloidal interactions of micro-sized biochar and a kaolinitic soil clay. Sci Total Environ 738:139844. https://doi.org/10.1016/j.scitotenv.2020.139844

  55. Medyńska-Juraszek A, Rivier P-A, Rasse D, Joner EJ (2020) Biochar affects heavy metal uptake in plants through interactions in the Rhizosphere. Appl Sci 10(15). https://doi.org/10.3390/app10155105

  56. Liu G, Chen L, Jiang Z, Zheng H, Dai Y, Luo X, Wang Z (2017) Aging impacts of low molecular weight organic acids (LMWOAs) on furfural production residue-derived biochars: porosity, functional properties, and inorganic minerals. Sci Total Environ 607–608:1428–1436. https://doi.org/10.1016/j.scitotenv.2017.07.046

  57. Ma S, Jing F, Sohi SP, Chen J (2019) New insights into contrasting mechanisms for PAE adsorption on millimeter, micron- and nano-scale biochar. Environ Sci Pollut Res 26(18):18636–18650. https://doi.org/10.1007/s11356-019-05181-3

    Article  CAS  Google Scholar 

  58. Tyc O, Song C, Dickschat JS, Vos M, Garbeva P (2017) The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol 25(4):280–292. https://doi.org/10.1016/j.tim.2016.12.002

  59. Zhang X, Sarmah AK, Bolan NS, He L, Lin X, Che L, Tang C, Wang H (2016). Effect of aging process on adsorption of diethyl phthalate in soils amended with bamboo biochar. Chemosphere 142:28–34. https://doi.org/10.1016/j.chemosphere.2015.05.037

  60. Liu W, Li Y, Feng Y, Qiao J, Zhao H, Xie J, Fang Y, Shen S, Liang S (2020) The effectiveness of nanobiochar for reducing phytotoxicity and improving soil remediation in cadmium-contaminated soil. Sci Rep 10(1):858. https://doi.org/10.1038/s41598-020-57954-3

    Article  CAS  Google Scholar 

  61. Mortimer M, Li D, Wang Y, Holden PA (2020) Physical properties of carbon nanomaterials and nanoceria affect pathways important to the nodulation competitiveness of the symbiotic N2-fixing bacterium bradyrhizobium diazoefficiens. Small 16(21). https://doi.org/10.1002/smll.201906055

  62. Shen G, Ashworth DJ, Gan J, Yates SR (2016) Biochar amendment to the soil surface reduces fumigant emissions and enhances soil microorganism recovery. Environ Sci Technol 50(3):1182–1189. https://doi.org/10.1021/acs.est.5b03958

    Article  CAS  Google Scholar 

  63. Zhang M, Liang W, Tu Z, Li R, Zhang Z, Ali A, Xiao R (2021) Succession of bacterial community during composting: dissimilarity between compost mixture and biochar additive. Biochar 3(2):229–237. https://doi.org/10.1007/s42773-020-00078-8

    Article  CAS  Google Scholar 

  64. Joseph S, Graber ER, Chia C, Munroe P, Donne S, Thomas T, Nielsen S, Marjo C, Rutlidge H, Pan GX, Li L, Taylor P, Rawal A, Hook J (2013) Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag 4(3):323–343. https://doi.org/10.4155/cmt.13.23

    Article  CAS  Google Scholar 

  65. Chen H, Zhang J, Tang L, Su M, Tian D, Zhang L, Li Z, Hu S (2019) Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria. Environ Int 127:395–401. https://doi.org/10.1016/j.envint.2019.03.068

  66. Deng M, Li K, Yan YJ, Huang F, Peng D (2022) Enhanced cadmium removal by growing Bacillus cereus RC-1 immobilized on different magnetic biochars through simultaneous adsorption and bioaccumulation. Environ Sci Pollut Res 29(13):18495–18507. https://doi.org/10.1007/s11356-021-17125-x

    Article  CAS  Google Scholar 

  67. Guo X, Cui X, Li H (2020) Effects of fillers combined with biosorbents on nutrient and heavy metal removal from biogas slurry in constructed wetlandsSci Total Environ 703:134788. https://doi.org/10.1016/j.scitotenv.2019.134788

  68. Guo X, Li H (2019) Effects of iron-modified biochar and AMF inoculation on the growth and heavy metal uptake of Senna occidentalis in heavy metal-contaminated soil. Pol J Environ Stud 28(4):2611–2621. https://doi.org/10.15244/pjoes/92545

  69. Ye J, Liao W, Zhang P, Li J, Nabi M, Wang S, Cai Y, Li F (2020) Fe1-xS/biochar combined with thiobacillus enhancing lead phytoavailability in contaminated soil: preparation of biochar, enrichment of thiobacillus and their function on soil lead. Environ Pollut 267:115447. https://doi.org/10.1016/j.envpol.2020.115447

  70. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Experientia Suppl 2012(101):133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  71. Chen G, Wang H, Han L, Yang N, Hu B, Qiu M, Zhong X (2021) Highly efficient removal of U(VI) by a novel biochar supported with FeS nanoparticles and chitosan composites. J Mol Liq 327:114807. https://doi.org/10.1016/j.molliq.2020.114807

    Article  CAS  Google Scholar 

  72. Qhubu MC, Mgidlana LG, Madikizela LM, Pakade VE (2021) Preparation, characterization and application of activated clay biochar composite for removal of Cr(VI) in water: isotherms, kinetics and thermodynamics. Mater Chem Phys 260:124165. https://doi.org/10.1016/j.matchemphys.2020.124165

  73. Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21(1):28–44. https://doi.org/10.1021/tx700198a

    Article  Google Scholar 

  74. Zhou L, Chi T, Zhou Y, Lv J, Chen H, Sun S, Zhu X, Wu H, Hu X (2022) Efficient removal of hexavalent chromium through adsorption-reduction-adsorption pathway by iron-clay biochar composite prepared from Populus nigra. Sep Purif Technol 285(2021). https://doi.org/10.1016/j.seppur.2021.120386

  75. Ara A, Usmani JA (2015) Lead toxicity: a review. Interdiscip Toxicol 8(2):55

    Article  Google Scholar 

  76. Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Hanawa S, Araki T (2021) Lead exposure is associated with functional and microstructural changes in the healthy human brain. Commun Biol 4(1):1–14

    Article  Google Scholar 

  77. Li Y, Shaheen SM, Azeem M, Zhang L, Feng C, Peng J, Qi W, Liu J, Luo Y, Peng Y, Ali EF, Smith K, Rinklebe J, Zhang Z, Li R (2022) Removal of lead (Pb+2) from contaminated water using a novel MoO3-biochar composite: performance and mechanism. Environ Pollut 308(June). https://doi.org/10.1016/j.envpol.2022.119693

  78. Horvath A, Rachlew E (2016) Nuclear power in the 21st century: challenges and possibilities. Ambio 45(1):38–49

    Article  CAS  Google Scholar 

  79. Sabri NA, Schmitt H, Van der Zaan B, Gerritsen HW, Zuidema T, Rijnaarts HHM, Langenhoff AAM (2020) Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. J Environ Chem Eng 8(1):102245. https://doi.org/10.1016/j.jece.2018.03.004

  80. Patel AK, Singhania RR, Pal A, Chen C-W, Pandey A, Dong C-D (2022) Advances on tailored biochar for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases. Sci Total Environ 817:153054

    Article  CAS  Google Scholar 

  81. Ma Y, Lu T, Yang L, Wu L, Li P, Tang J, Chen Y, Gao F, Cui S, Qi X (2022) Efficient adsorptive removal of fluoroquinolone antibiotics from water by alkali and bimetallic salts co-hydrothermally modified sludge biochar. Environ Pollut 298:118833

    Article  CAS  Google Scholar 

  82. Baggio D, Ananda-Rajah MR (2021) Fluoroquinolone antibiotics and adverse events. Aust Prescr 44(5):161

    Article  Google Scholar 

  83. Jing F, Guan J, Tang W, Chen J (2022) Mechanistic insight into adsorptive removal of ionic NOR and nonionic DEP organic contaminates by clay-biochar composites. Environ Pollut 310(May):119881. https://doi.org/10.1016/j.envpol.2022.119881

    Article  CAS  Google Scholar 

  84. Liu Y, Yuan Y, Wang Z, Wen Y, Liu L, Wang T, Xie X (2022) Removal of ofloxacin from water by natural ilmenite-biochar composite: a study on the synergistic adsorption mechanism of multiple effects. Biores Technol 363(September):127938. https://doi.org/10.1016/j.biortech.2022.127938

    Article  CAS  Google Scholar 

  85. Liu J-L, Wong M-H (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59:208–224

    Article  CAS  Google Scholar 

  86. Wei X, Xu X, Yang X, Liu Z, Naraginti S, Sen L, Weidi S, Buwei L (2022) Novel assembly of BiVO4@N-Biochar nanocomposite for efficient detoxification of triclosan. Chemosphere 298(March):134292. https://doi.org/10.1016/j.chemosphere.2022.134292

    Article  CAS  Google Scholar 

  87. Wu C, Fu L, Li H, Liu X, Wan C (2022) Science of the total environment using biochar to strengthen the removal of antibiotic resistance genes: performance and mechanism. Sci Total Environ 816:151554. https://doi.org/10.1016/j.scitotenv.2021.151554

    Article  CAS  Google Scholar 

  88. Fu Y, Wang F, Sheng H, Hu F, Wang Z, Xu M, Bian Y, Jiang X, Tiedje JM (2021) Removal of extracellular antibiotic resistance genes using magnetic biochar/quaternary phosphonium salt in aquatic environments: a mechanistic study. J Hazard Mater 411:125048. https://doi.org/10.1016/j.jhazmat.2021.125048

    Article  CAS  Google Scholar 

  89. Hu ZT, Wang XF, Xiang S, Ding Y, Zhao DY, Hu M, Pan Z, Varjani S, Wong JWC, Zhao J (2022) Self-cleaning Mn[sbnd]Zn ferrite/biochar adsorbents for effective removal of tetracycline. Sci Total Environ 844(July):157202. https://doi.org/10.1016/j.scitotenv.2022.157202

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula V. Messina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sartuqui, J., D’Elía, N.L., Messina, P.V. (2023). New Trends in Biochar–Mineral Composites. In: Nadda, A.K. (eds) Biochar and its Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5239-7_8

Download citation

Publish with us

Policies and ethics