Skip to main content

Advertisement

Log in

Progress and Prospects of Transition Metal Sulfides for Sodium Storage

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Sodium-ion battery (SIB), one of most promising battery technologies, offers an alternative low-cost solution for scalable energy storage. Developing advanced electrode materials with superior electrochemical performance is of great significance for SIBs. Transition metal sulfides that emerge as promising anode materials have advantageous features particularly for electrochemical redox reaction, including high theoretical capacity, good cycling stability, easily-controlled structure and modifiable chemical composition. In this review, recent progress of transition metal sulfides based materials for SIBs is summarized by discussing the materials properties, advanced design strategies, electrochemical reaction mechanism and their applications in sodium-ion full batteries. Moreover, we propose several promising strategies to overcome the challenges of transition metal sulfides for SIBs, paving the way to explore and construct advanced electrode materials for SIBs and other energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Armand M, Tarascon J-M. Building better batteries. Nature. 2008;451:652.

    CAS  Google Scholar 

  2. Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater. 2018;30:1800561.

    Google Scholar 

  3. Evarts EC. Lithium batteries: to the limits of lithium. Nature. 2015;526:93.

    Google Scholar 

  4. Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev. 2017;46:3529.

    CAS  Google Scholar 

  5. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7:19.

    CAS  Google Scholar 

  6. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334:928.

    CAS  Google Scholar 

  7. Kunitski M, Eicke N, Huber P, Kohler J, Zeller S, Voigtsberger J, Schlott N, Henrichs K, Sann H, Trinter F, Schmidt LPH, Kalinin A, Schoffler MS, Jahnke T, Lein M, Dorner R. Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nat Commun. 2019;10:1.

    CAS  Google Scholar 

  8. Huang H, Xu R, Feng Y, Zeng S, Jiang Y, Wang H, Luo W, Yu Y. Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology defect and structure engineering. Adv Mater. 2020;32:1904320.

    CAS  Google Scholar 

  9. Huang HB, Shi HD, Das P, Qin JQ, Li YG, Wang X, Su F, Wen PC, Li SY, Lu PF, Liu FY, Li YJ, Zhang Y, Wang Y, Wu ZS, Cheng HM. The chemistry and promising applications of graphene and porous graphene materials. Adv Funct Mater. 2020. https://doi.org/10.1002/adfm.201909035.

    Article  Google Scholar 

  10. Fu N, Liu Y, Liu R, Wang X, Yang Z. Metal cation-assisted synthesis of amorphous B, N co-doped carbon nanotubes for superior sodium storage. Small. 2020;16:e2001607.

    Google Scholar 

  11. Dou XW, Hasa I, Saurel D, Vaalma C, Wu LM, Buchholz D, Bresser D, Komaba S, Passerini S. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater Today. 2019;23:87.

    CAS  Google Scholar 

  12. Jin QZ, Wang KL, Feng PY, Zhang ZC, Cheng SJ, Jiang K. Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries. Energy Storage Mater. 2020;27:43.

    Google Scholar 

  13. Jin HL, Lu H, Wu WY, Chen SQ, Liu TC, Bi XX, Xie WN, Chen X, Yang KQ, Li J, Liu AL, Lei Y, Wang JC, Wang S, Lu J. Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium ion batteries. Nano Energy. 2020;70:104569.

    CAS  Google Scholar 

  14. Fan X, Jiang Z, Huang L, Wang X, Han J, Sun R, Gou L, Li DL, Ding YL. 3D porous self-standing Sb foam anode with conformal indium layer for enhanced sodium storage. Acs Appl Mater Inter. 2020;12:20344.

    CAS  Google Scholar 

  15. Li W, Han C, Gu Q, Chou S, Liu HK, Dou SX. Three-dimensional electronic network assisted by TiN conductive pillars and chemical adsorption to boost the electrochemical performance of red phosphorus. ACS Nano. 2020;14:4609.

    CAS  Google Scholar 

  16. Guo ST, Li H, Lu Y, Liu ZF, Hu XL. Lattice softening enables highly reversible sodium storage in anti-pulverization Bi-Sb alloy/carbon nanofibers. Energy Storage Mater. 2020;27:270.

    Google Scholar 

  17. Chen BC, Qin HY, Li K, Zhang B, Liu EZ, Zhao NQ, Shi CS, He CN. Yolk-shelled Sb@C nanoconfined nitrogen/sulfur co-doped 3D porous carbon microspheres for sodium-ion battery anode with ultralong high-rate cycling. Nano Energy. 2019;66:104133.

    CAS  Google Scholar 

  18. Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small. 2019. https://doi.org/10.1002/smll.201903194.

    Article  Google Scholar 

  19. Nam KH, Hwa Y, Park CM. Zinc phosphides as outstanding sodium-ion battery anodes. Acs Appl Mater Inter. 2020;12:15053.

    CAS  Google Scholar 

  20. Li W, Chou SL, Wang JZ, Kim JH, Liu HK, Dou SX. Sn4+xP3@ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability. Adv Mater. 2014;26:4037.

    CAS  Google Scholar 

  21. Ge X, Li Z, Yin L. Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy. 2017;32:117.

    CAS  Google Scholar 

  22. Shi SS, Sun CL, Yin XP, Shen LY, Shi QH, Zhao KN, Zhao YF, Zhang JJ. FeP quantum dots confined in carbon-nanotube-grafted P-doped carbon octahedra for high-rate sodium storage and full-cell applications. Adv Funct Mater. 2020;30:1909283.

    CAS  Google Scholar 

  23. Sun D, Zhu XB, Luo B, Zhang Y, Tang YG, Wang HY, Wang LZ. New binder-free metal phosphide-carbon felt composite anodes for sodium-ion battery. Adv Energy Mater. 2018;8:1801197.

    Google Scholar 

  24. Qi SH, Xu BL, Tiong VT, Hu J, Ma JM. Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chem Eng J. 2020;379:122261.

    CAS  Google Scholar 

  25. Liang JM, Zhang LJ, XiLi DG, Kang J. Rational design of hollow tubular SnO2@TiO2 nanocomposites as anode of sodium ion batteries. Electrochim Acta. 2020;341:136030.

    CAS  Google Scholar 

  26. Fang S, Bresser D, Passerini S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv Energy Mater. 2020;10:1902485.

    CAS  Google Scholar 

  27. Ma D, Li Y, Mi H, Luo S, Zhang P, Lin Z, Li J, Zhang H. Robust SnO2-x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew Chem Int Edit. 2018;57:8901.

    CAS  Google Scholar 

  28. Zhang Y, Ding ZY, Foster CW, Banks CE, Qiu XQ, Ji XB. Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv Funct Mater. 2017;27:1700856.

    Google Scholar 

  29. Hu Z, Liu Q, Chou SL, Dou SX. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv Mater. 2017;29:1700606.

    Google Scholar 

  30. Liu YZ, Yang CH, Zhang QY, Liu ML. Recent progress in the design of metal sulfides as anode materials for sodium ion batteries. Energy Storage Mater. 2019;22:66.

    Google Scholar 

  31. Xiao Y, Lee SH, Sun YK. The application of metal sulfides in sodium ion batteries. Adv Energy Mater. 2017;7:1601329.

    Google Scholar 

  32. Kang WP, Wang YY, Xu J. Recent progress in layered metal dichalcogenide nanostructures as electrodes for high-performance sodium-ion batteries. J Mater Chem A. 2017;5:7667.

    CAS  Google Scholar 

  33. Chen J, Chua DHC, Lee PS. The advances of metal sulfides and in situ characterization methods beyond Li ion batteries: sodium, potassium, and aluminum ion batteries. Small Methods. 2019;4:1900648.

    Google Scholar 

  34. Sun Z, Wu XL, Xu J, Qu D, Zhao B, Gu Z, Li W, Liang H, Gao L, Fan Y, Zhou K, Han D, Gan S, Zhang Y, Niu L. Construction of bimetallic selenides encapsulated in nitrogen/sulfur co-doped hollow carbon nanospheres for high-performance sodium/potassium-ion half/full batteries. Small. 2020;16:1907670.

    CAS  Google Scholar 

  35. Zhao CH, Shen Z, Tu FZ, Hu ZB. Template directed hydrothermal synthesis of flowerlike NiSex/C composites as lithium/sodium ion battery anodes. J Mater Sci. 2020;55:3495.

    CAS  Google Scholar 

  36. Tan HT, Feng YZ, Rui XH, Yu Y, Huang SM. Metal chalcogenides: paving the way for high-performance sodium/potassium-ion batteries. Small Methods. 2020;4:1900563.

    CAS  Google Scholar 

  37. Jiang Y, Zou G, Hou H, Li J, Liu C, Qiu X, Ji X. Composition engineering boosts voltage windows for advanced sodium-ion batteries. ACS Nano. 2019;13:10787.

    CAS  Google Scholar 

  38. Zhou J, Liu Y, Zhang S, Zhou T, Guo Z. Metal chalcogenides for potassium storage. InfoMat. 2020;2:437.

    CAS  Google Scholar 

  39. Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nat Rev Mater. 2017;2:17033.

    CAS  Google Scholar 

  40. Feng LL, Li GD, Liu Y, Wu Y, Chen H, Wang Y, Zou YC, Wang D, Zou X. Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts. Acs Appl Mater Inter. 2015;7:980.

    CAS  Google Scholar 

  41. Zhou Q, Liu L, Huang ZF, Yi LG, Wang XY, Cao GZ. Co3S4@polyaniline nanotubes as high-performance anode materials for sodium ion batteries. J Mater Chem A. 2016;4:5505.

    CAS  Google Scholar 

  42. Li X, Wang J. One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion. InfoMat. 2019;2:3.

    Google Scholar 

  43. Tong X, Liu K, Zeng M, Fu L. Vapor-phase growth of high-quality wafer-scale two-dimensional materials. InfoMat. 2019;1:460.

    CAS  Google Scholar 

  44. Wang W, Jiang B, Qian C, Lv F, Feng J, Zhou J, Wang K, Yang C, Yang Y, Guo S. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv Mater. 2018;30:1801812.

    Google Scholar 

  45. Pan Q, Zhang Q, Zheng F, Liu Y, Li Y, Ou X, Xiong X, Yang C, Liu M. Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries. ACS Nano. 2018;12:12578.

    CAS  Google Scholar 

  46. Park H, Kwon J, Choi H, Shin D, Song T, Lou XWD. Unusual Na(+) ion intercalation/deintercalation in metal-rich Cu1.8S for Na-ion batteries. ACS Nano. 2018;12:2827.

    CAS  Google Scholar 

  47. Aricò AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4:366.

    Google Scholar 

  48. Dong C, Guo L, Li H, Zhang B, Gao X, Tian F, Qian Y, Wang D, Xu L. Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries. Energy Storage Mater. 2020;25:679.

    Google Scholar 

  49. Chen Z, Wu R, Liu M, Wang H, Xu H, Guo Y, Song Y, Fang F, Yu X, Sun D. General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv Funct Mater. 2017;27:1702046.

    Google Scholar 

  50. Fang Y, Yu XY, Lou XWD. Bullet-like Cu9 S5 hollow particles coated with nitrogen-doped carbon for sodium-ion batteries. Angew Chem Int Edit. 2019;58:7744.

    CAS  Google Scholar 

  51. Fan S, Huang S, Chen Y, Shang Y, Wang Y, Kong D, Pam ME, Shi L, Lim YW, Shi Y, Yang HY. Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage. Energy Storage Mater. 2019;23:17.

    Google Scholar 

  52. Geng X, Jiao Y, Han Y, Mukhopadhyay A, Yang L, Zhu H. Freestanding metallic 1T MoS2 with dual ion diffusion paths as high rate anode for sodium-ion batteries. Adv Funct Mater. 2017;27:1702998.

    Google Scholar 

  53. Wu T, Jing M, Liu Y, Ji X. Binding low crystalline MoS2 nanoflakes on nitrogen-doped carbon nanotube: towards high-rate lithium and sodium storage. J Mater Chem A. 2019;7:6439.

    CAS  Google Scholar 

  54. Ren W, Zhang H, Guan C, Cheng C. Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv Funct Mater. 2017;27:1702116.

    Google Scholar 

  55. Wang J, Luo N, Wu J, Huang S, Yu L, Wei M. Hierarchical spheres constructed by ultrathin VS2 nanosheets for sodium-ion batteries. J Mater Chem A. 2019;7:3691.

    CAS  Google Scholar 

  56. Chen B, Lu H, Zhou J, Ye C, Shi C, Zhao N, Qiao S-Z. Porous MoS2/carbon spheres anchored on 3D interconnected multiwall carbon nanotube networks for ultrafast Na storage. Adv Energy Mater. 2018;8:1702909.

    Google Scholar 

  57. Zheng Y, Zhou T, Zhang C, Mao J, Liu H, Guo Z. Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew Chem Int Edit. 2016;55:3408.

    CAS  Google Scholar 

  58. Xiang X, Zhang K, Chen J. Recent advances and prospects of cathode materials for sodium-ion batteries. Adv Mater. 2015;27:5343.

    CAS  Google Scholar 

  59. Ni J, Sun M, Li L. Highly efficient sodium storage in iron oxide nanotube arrays enabled by built-in electric field. Adv Mater. 2019;31:1902603.

    CAS  Google Scholar 

  60. Zhang C, Han F, Wang F, Liu Q, Zhou D, Zhang F, Xu S, Fan C, Li X, Liu J. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Mater. 2020;24:208.

    Google Scholar 

  61. Chen S, Huang S, Hu J, Fan S, Shang Y, Pam ME, Li X, Wang Y, Xu T, Shi Y, Yang HY. Boosting sodium storage of Fe1-xS/MoS2 composite via heterointerface engineering. Nano-Micro Lett. 2019;11:80.

    CAS  Google Scholar 

  62. Guo C, Zhang W, Liu Y, He J, Yang S, Liu M, Wang Q, Guo Z. Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high-performance sodium-ion batteries. Adv Funct Mater. 2019;29:1901925.

    Google Scholar 

  63. Cao L, Liang X, Ou X, Yang X, Li Y, Yang C, Lin Z, Liu M. Heterointerface engineering of hierarchical Bi2S3/MoS2 with self-generated rich phase boundaries for superior sodium storage performance. Adv Funct Mater. 2020;30:1910732.

    CAS  Google Scholar 

  64. Huang S, Fan S, Xie L, Wu Q, Kong D, Wang Y, Lim YV, Ding M, Shang Y, Chen S, Yang HY. Promoting highly reversible sodium storage of iron sulfide hollow polyhedrons via cobalt incorporation and graphene wrapping. Adv Energy Mater. 2019;9:1901584.

    Google Scholar 

  65. Cao D, Kang W, Huang Z, Li H, Yang M, Li J, Gao Y, Wang Y, Ma P, Sun D. N-doped carbon matrix supported Fe3Ni6S8 hierarchical architecture with excellent sodium storage capability and electrocatalytic properties. Electrochim Acta. 2019;325:134925.

    CAS  Google Scholar 

  66. Li J, Yan D, Lu T, Qin W, Yao Y, Pan L. Significantly improved sodium-ion storage performance of CuS nanosheets anchored into reduced graphene oxide with ether-based electrolyte. Acs Appl Mater Inter. 2017;9:2309.

    CAS  Google Scholar 

  67. Li H, Wang Y, Jiang J, Zhang Y, Peng Y, Zhao J. CuS microspheres as high-performance anode material for na-ion batteries. Electrochim Acta. 2017;247:851.

    CAS  Google Scholar 

  68. Zhou J, Wang L, Yang M, Wu J, Chen F, Huang W, Han N, Ye H, Zhao F, Li Y, Li Y. Hierarchical VS2 nanosheet assemblies: a universal host material for the reversible storage of alkali metal ions. Adv Mater. 2017;29:1702061.

    Google Scholar 

  69. Yang C, Ou X, Xiong X, Zheng F, Hu R, Chen Y, Liu M, Huang K. V5S8–graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries. Energy Environ Sci. 2017;10:107.

    CAS  Google Scholar 

  70. Ding S, Zhou B, Chen C, Huang Z, Li P, Wang S, Cao G, Zhang M. Three-dimensional self-assembled hairball-like VS4 as high-capacity anodes for sodium-ion batteries. Nano-Micro Lett. 2020;12:39.

    Google Scholar 

  71. Wang S, Gong F, Yang S, Liao J, Wu M, Xu Z, Chen C, Yang X, Zhao F, Wang B, Wang Y, Sun X. Graphene oxide-template controlled cuboid-shaped high-capacity VS4 nanoparticles as anode for sodium-ion batteries. Adv Funct Mater. 2018;28:1801806.

    Google Scholar 

  72. Cai Y, Yang H, Zhou J, Luo Z, Fang G, Liu S, Pan A, Liang S. Nitrogen doped hollow MoS2/C nanospheres as anode for long-life sodium-ion batteries. Chem Eng J. 2017;327:522.

    CAS  Google Scholar 

  73. Sun D, Ye D, Liu P, Tang Y, Guo J, Wang L, Wang H. MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv Energy Mater. 2018;8:1702383.

    Google Scholar 

  74. Sahu TS, Li Q, Wu J, Dravid VP, Mitra S. Exfoliated MoS2 nanosheets confined in 3-D hierarchical carbon nanotube@graphene architecture with superior sodium-ion storage. J Mater Chem A. 2017;5:355.

    CAS  Google Scholar 

  75. Zheng F, Pan Q, Yang C, Xiong X, Ou X, Hu R, Chen Y, Liu M. Sn-MoS2-C@C microspheres as a sodium-ion battery anode material with high capacity and long cycle life. Chem-Eur J. 2017;23:5051.

    CAS  Google Scholar 

  76. Wang Q, Zhang W, Guo C, Liu Y, Wang C, Guo Z. In situ construction of 3D interconnected FeS@Fe3C@graphitic carbon networks for high-performance sodium-ion batteries. Adv Funct Mater. 2017;27:1703390.

    Google Scholar 

  77. Li L, Peng S, Bucher N, Chen H-Y, Shen N, Nagasubramanian A, Eldho E, Hartung S, Ramakrishna S, Srinivasan M. Large-scale synthesis of highly uniform Fe1-xS nanostructures as a high-rate anode for sodium ion batteries. Nano Energy. 2017;37:81.

    Google Scholar 

  78. Shao Y, Yue J, Sun S, Xia H. Facile synthesis of FeS2 quantum-dots/functionalized graphene-sheet composites as advanced anode material for sodium-ion batteries. Chin J Chem. 2017;35:73.

    CAS  Google Scholar 

  79. Liu Y, Zhang L, Liu D, Hu W, Yan X, Yu C, Zeng H, Shen T. Turbostratic carbon-localised FeS2 nanocrystals as anodes for high-performance sodium-ion batteries. Nanoscale. 2019;11:15497.

    CAS  Google Scholar 

  80. Jin A, Yu S-H, Park J-H, Kang SM, Kim M-J, Jeon T-Y, Mun J, Sung Y-E. Iron sulfides with dopamine-derived carbon coating as superior performance anodes for sodium-ion batteries. Nano Res. 2019;12:2609.

    CAS  Google Scholar 

  81. Huang A, Wang Q, Ma Z, Rui K, Huang X, Zhu J, Huang W. Surface anionization of self-assembled iron sulfide hierarchitectures to enhance capacitive storage for alkaline-metal-ion batteries. Acs Appl Mater Inter. 2019;11:39991.

    CAS  Google Scholar 

  82. Guo Y, Zhang L, Wang J, Liang J, Xi L. Facile method for adjustable preparation of nano-Fe7S8 supported by carbon as the anode for enhanced lithium/sodium storage properties in Li/Na-ion batteries. Electrochim Acta. 2019;322:134763.

    CAS  Google Scholar 

  83. Chen K, Li G, Wang Y, Chen W, Mi L. High loading FeS2 nanoparticles anchored on biomass-derived carbon tube as low cost and long cycle anode for sodium-ion batteries. Green Energy Environ. 2020;5:50.

    Google Scholar 

  84. Li X, Liu T, Wang Y-X, Chou S-L, Xu X, Cao A, Chen L. S/N-doped carbon nanofibers affording Fe7S8 particles with superior sodium storage. J Power Sources. 2020;451:227790.

    CAS  Google Scholar 

  85. Han F, Lv T, Sun B, Tang W, Zhang C, Li X. In situ formation of ultrafine CoS2 nanoparticles uniformly encapsulated in N/S-doped carbon polyhedron for advanced sodium-ion batteries. Rsc Adv. 2017;7:30699.

    CAS  Google Scholar 

  86. Han F, Jun Tan CY, Gao Z. Template-free formation of carbon nanotube-supported cobalt sulfide@carbon hollow nanoparticles for stable and fast sodium ion storage. J Power Sources. 2017;339:41.

    CAS  Google Scholar 

  87. Ma X, Xiong X, Zou P, Liu W, Wang F, Liang L, Liu Y, Yuan C, Lin Z. General and scalable fabrication of core-shell metal sulfides@c anchored on 3D N-doped foam toward flexible sodium ion batteries. Small. 2019;15:1903259.

    CAS  Google Scholar 

  88. Liu Y, Jiang W, Liu M, Zhang L, Qiang C, Fang Z. Ultrafine Co1-xS attached to porous interconnected carbon skeleton for sodium-ion batteries. Langmuir. 2019;35:16487.

    CAS  Google Scholar 

  89. Wu Y, Gaddam RR, Zhang C, Lu H, Wang C, Golberg D, Zhao XS. Stabilising cobalt sulphide nanocapsules with nitrogen-doped carbon for high-performance sodium-ion storage. Nano-Micro Lett. 2020;12:48.

    Google Scholar 

  90. He X, Bi L, Li Y, Xu C, Lin D. CoS2 embedded graphitic structured N-doped carbon spheres interlinked by rGO as anode materials for high-performance sodium-ion batteries. Electrochim Acta. 2020;332:135453.

    CAS  Google Scholar 

  91. Dong C, Guo L, He Y, Shang L, Qian Y, Xu L. Ultrafine Co1-xS nanoparticles embedded in a nitrogen-doped porous carbon hollow nanosphere composite as an anode for superb sodium-ion batteries and lithium-ion batteries. Nanoscale. 2018;10:2804.

    CAS  Google Scholar 

  92. Chen T, Ma Y, Guo Q, Yang M, Xia H. A facile sol–gel route to prepare functional graphene nanosheets anchored with homogeneous cobalt sulfide nanoparticles as superb sodium-ion anodes. J Mater Chem A. 2017;5:3179.

    CAS  Google Scholar 

  93. Xia X, Wang Q, Zhu Q, Xie J, Wang J, Zhuang D, Zhang S, Cao G, Zhao X. Improved Na-storage cycling of amorphous-carbon-sheathed Ni3S2 arrays and investigation by in situ TEM characterization. Mater Today Energy. 2017;5:99.

    Google Scholar 

  94. Shuang W, Huang H, Kong L, Zhong M, Li A, Wang D, Xu Y, Bu X-H. Nitrogen-doped carbon shell-confined Ni3S2 composite nanosheets derived from Ni-MOF for high performance sodium-ion battery anodes. Nano Energy. 2019;62:154.

    CAS  Google Scholar 

  95. Li J, Cao J, Li X, Sari HMK, Li L, Lv C, Zatovsky IV, Han W. Superior full battery performance of tunable hollow N-Doped carbonaceous fibers encapsulating Ni3S2 nanocrystals with enhanced Li/Na storage. Electrochim Acta. 2020;332:135446.

    CAS  Google Scholar 

  96. Chang X, Ma Y, Yang M, Xing T, Tang L, Chen T, Guo Q, Zhu X, Liu J, Xia H. In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage. Energy Storage Mater. 2019;23:358.

    Google Scholar 

  97. Li S, He W, Liu B, Cui J, Wang X, Peng D-L, Liu B, Qu B. One-step construction of three-dimensional nickel sulfide-embedded carbon matrix for sodium-ion batteries and hybrid capacitors. Energy Storage Mater. 2020;25:636.

    Google Scholar 

  98. Lin Y, Qiu Z, Li D, Ullah S, Hai Y, Xin H, Liao W, Yang B, Fan H, Xu J, Zhu C. NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Mater. 2018;11:67.

    Google Scholar 

  99. Liu X, Zou F, Liu K, Qiang Z, Taubert CJ, Ustriyana P, Vogt BD, Zhu Y. A binary metal organic framework derived hierarchical hollow Ni3S2/Co9S8/N-doped carbon composite with superior sodium storage performance. J Mater Chem A. 2017;5:11781.

    CAS  Google Scholar 

  100. Dong S, Li C, Ge X, Li Z, Miao X, Yin L. ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano. 2017;11:6474.

    CAS  Google Scholar 

  101. Li J, Liu B, Li M, Zhou Q, Chen Q, Guo C, Zhang L. Engineering Zn0.33Co0.67S hollow microspheres with enhanced electrochemical performance for lithium and sodium ion batteries. Eur J Inorg Chem. 2018;2018:3036.

    CAS  Google Scholar 

  102. Jiang Y, Guo Y, Lu W, Feng Z, Xi B, Kai S, Zhang J, Feng J, Xiong S. Rationally incorporated MoS2/SnS2 nanoparticles on graphene sheets for lithium-ion and sodium-ion batteries. Acs Appl Mater Inter. 2017;9:27697.

    CAS  Google Scholar 

  103. Krengel M, Hansen AL, Kaus M, Indris S, Wolff N, Kienle L, Westfal D, Bensch W. CuV2S4: a high rate capacity and stable anode material for sodium ion batteries. Acs Appl Mater Inter. 2017;9:21283.

    CAS  Google Scholar 

  104. Geng H, Yang J, Dai Z, Zhang Y, Zheng Y, Yu H, Wang H, Luo Z, Guo Y, Zhang Y, Fan H, Wu X, Zheng J, Yang Y, Yan Q, Gu H. Co9 S8/MoS2 yolk-shell spheres for advanced Li/Na storage. Small. 2017;13:1603490.

    Google Scholar 

  105. Pan Q, Zheng F, Ou X, Yang C, Xiong X, Tang Z, Zhao L, Liu M. MoS2 decorated Fe3O4/Fe1–xS@C nanosheets as high-performance anode materials for lithium ion and sodium ion batteries. Acs Sustain Chem Eng. 2017;5:4739.

    CAS  Google Scholar 

  106. Fang Y, Guan BY, Luan D, Lou XWD. Synthesis of CuS@CoS2 double-shelled nanoboxes with enhanced sodium storage properties. Angew Chem Int Edit. 2019;58:7739.

    CAS  Google Scholar 

  107. Luo W, Cao X, Liang S, Huang J, Su Q, Wang Y, Fang G, Shan L, Zhou J. Trimetallic hybrid sulfides embedded in nitrogen-doped carbon nanocubes as an advanced sodium-ion battery anode. ACS Applied Energy Mater. 2019;2:4567.

    CAS  Google Scholar 

  108. Li X, Zhang W, Cai J, Yan H, Cui M, Wu G, Li M. Hierarchical nanosheets constructed by integration of bimetallic sulfides into N-Doped carbon: enhanced diffusion kinetics and cycling stability for sodium storage. Nano Energy. 2019;62:239.

    CAS  Google Scholar 

  109. Zhang Y, Wang P, Yin Y, Liu N, Song N, Fan L, Zhang N, Sun K. Carbon coated amorphous bimetallic sulfide hollow nanocubes towards advanced sodium ion battery anode. Carbon. 2019;150:378.

    CAS  Google Scholar 

  110. Lin XM, Chen JH, Fan JJ, Ma Y, Radjenovic P, Xu QC, Huang L, Passerini S, Tian ZQ, Li JF. Synthesis and operando sodiation mechanistic study of nitrogen-doped porous carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode. Adv Energy Mater. 2019;9:1902312.

    CAS  Google Scholar 

  111. Xie H, Chen M, Wu L. Hierarchical nanostructured NiS/MoS2/C composite hollow spheres for high performance sodium-ion storage performance. ACS Appl Mater Interfaces. 2019;11:41222.

    CAS  Google Scholar 

  112. Fang Y, Luan D, Chen Y, Gao S, Lou XW. Synthesis of copper-substituted CoS2@CuxS double-shelled nanoboxes by sequential ion exchange for efficient sodium storage. Angew Chem Int Edit. 2020;132:2666.

    Google Scholar 

  113. Liao Y, Wu C, Zhong Y, Chen M, Cai L, Wang H, Liu X, Cao G, Li W. Highly dispersed Co-Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodium ion storage. Nano Res. 2020;13:188.

    CAS  Google Scholar 

  114. Sun Z, Zhao C, Cao X, Zeng K, Ma Z, Hu Y, Tian J-H, Yang R. Insights into the phase transformation of NiCo2S4@rGO for sodium-ion battery electrode. Electrochim Acta. 2020;338:135900.

    CAS  Google Scholar 

  115. Chen J, Mohrhusen L, Ali G, Li S, Chung KY, Al-Shamery K, Lee PS. Electrochemical mechanism investigation of Cu2MoS4 hollow nanospheres for fast and stable sodium ion storage. Adv Funct Mater. 2019;29:1807753.

    Google Scholar 

  116. Park JY, Kim SJ, Yim K, Dae KS, Lee Y, Dao KP, Park JS, Jeong HB, Chang JH, Seo HK, Ahn CW, Yuk JM. Pulverization-tolerance and capacity recovery of copper sulfide for high-performance sodium storage. Adv Sci. 2019;6:1900264.

    Google Scholar 

  117. Ren W, Zhu Z, An Q, Mai L. Emerging prototype sodium-ion full cells with nanostructured electrode materials. Small. 2017;13:1604181.

    Google Scholar 

  118. Deng L, Yang Z, Tan L, Zeng L, Zhu Y, Guo L. Investigation of the prussian blue analog Co3 [Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv Mater. 2018;30:1802510.

    Google Scholar 

  119. Rui X, Sun W, Wu C, Yu Y, Yan Q. An advanced sodium-ion battery composed of carbon coated Na(3)V(2)(PO(4))(3) in a porous graphene network. Adv Mater. 2015;27:6670.

    CAS  Google Scholar 

  120. Liu QN, Hu Z, Chen MZ, Zou C, Jin HL, Wang S, Chou SL, Liu Y, Dou SX. The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus prussian blue analogs. Adv Funct Mater. 2020;30:1909530.

    CAS  Google Scholar 

  121. Liu X, Zuo W, Zheng B, Xiang Y, Zhou K, Xiao Z, Shan P, Shi J, Li Q, Zhong G, Fu R, Yang Y. P2-Na0.67AlxMn1-xO2: cost-effective, stable and high-rate sodium electrodes by suppressing phase transitions and enhancing sodium cation mobility. Angew Chem Int Edit. 2019;58:18086.

    CAS  Google Scholar 

  122. Gao G, Tie D, Ma H, Yu H, Shi S, Wang B, Xu S, Wang L, Zhao Y. Interface-rich mixed P2+T phase NaxCo0.1Mn0.9O2 (0.44≤x≤0.7) toward fast and high capacity sodium storage. J Mater Chem A. 2018;6:6675.

    CAS  Google Scholar 

  123. Zou K, Cai P, Tian Y, Li J, Liu C, Zou G, Hou H, Ji X. Voltage-induced high-efficient in situ presodiation strategy for sodium ion capacitors. Small Methods. 2020;4:1900763.

    CAS  Google Scholar 

  124. Xu XF, Zhou D, Qin XY, Lin K, Kang FY, Li BH, Shanmukaraj D, Rojo T, Armand M, Wang GX. A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat Commun. 2018;9:3870.

    Google Scholar 

  125. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon. 2016;105:52.

    CAS  Google Scholar 

  126. Kim C-S, Jeong KM, Kim K, Yi C-W. Effects of capacity ratios between anode and cathode on electrochemical properties for lithium polymer batteries. Electrochim Acta. 2015;155:431.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Research Program of China (No. 2018YFB0905400, 2017YFA0206301), the National Natural Science Foundation of China (Nos. 51925207, U1910210, 21605136, and 51872277), Dalian National Laboratory For Clean Energy (DNL) Cooperation Fund, the CAS (DNL 180310), and the Fundamental Research Funds for the Central Universities (WK2060140026, WK2060000009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Yao, Y., Wu, Y. et al. Progress and Prospects of Transition Metal Sulfides for Sodium Storage. Adv. Fiber Mater. 2, 314–337 (2020). https://doi.org/10.1007/s42765-020-00052-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-020-00052-w

Keywords

Navigation