Skip to main content

Advertisement

Log in

All-Solid-State Lithium Batteries with Sulfide Electrolytes and Oxide Cathodes

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

All-solid-state lithium batteries (ASSLBs) have attracted increasing attention due to their high safety and energy density. Among all corresponding solid electrolytes, sulfide electrolytes are considered to be the most promising ion conductors due to high ionic conductivities. Despite this, many challenges remain in the application of ASSLBs, including the stability of sulfide electrolytes, complex interfacial issues between sulfide electrolytes and oxide electrodes as well as unstable anodic interfaces. Although oxide cathodes remain the most viable electrode materials due to high stability and industrialization degrees, the matching of sulfide electrolytes with oxide cathodes is challenging for commercial use in ASSLBs. Based on this, this review will present an overview of emerging ASSLBs based on sulfide electrolytes and oxide cathodes and highlight critical properties such as compatible electrolyte/electrode interfaces. And by considering the current challenges and opportunities of sulfide electrolyte-based ASSLBs, possible research directions and perspectives are discussed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zhao, Y., Li, X.F., Yan, B., et al.: Recent developments and understanding of novel mixed transition–metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 6, 1502175 (2016). https://doi.org/10.1002/aenm.201502175

    Article  CAS  Google Scholar 

  2. Lian, P.J., Zhao, B.S., Zhang, L.Q., et al.: Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. J. Mater. Chem. A 7, 20540–20557 (2019). https://doi.org/10.1039/c9ta04555d

    Article  CAS  Google Scholar 

  3. Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016). https://doi.org/10.1002/advs.201500213

    Article  CAS  Google Scholar 

  4. Sun, C., Liu, J., Gong, Y., et al.: Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017). https://doi.org/10.1016/j.nanoen.2017.01.028

    Article  CAS  Google Scholar 

  5. Manthiram, A., Yu, X.W., Wang, S.F.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103

    Article  CAS  Google Scholar 

  6. Takada, K.: Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759–770 (2013)

    Article  CAS  Google Scholar 

  7. Bachman, J.C., Muy, S., Grimaud, A., et al.: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563

    Article  CAS  PubMed  Google Scholar 

  8. Gao, Z.H., Sun, H.B., Fu, L., et al.: All-solid-state batteries: Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, 1870122 (2018). https://doi.org/10.1002/adma.201870122

    Article  CAS  Google Scholar 

  9. Lau, J., DeBlock, R.H., Butts, D.M., et al.: Sulfide solid electrolytes for lithium battery applications. Adv. Energy Mater. 8, 1800933 (2018). https://doi.org/10.1002/aenm.201800933

    Article  CAS  Google Scholar 

  10. Zhang, Q., Cao, D.X., Ma, Y., et al.: Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 31, 1901131 (2019). https://doi.org/10.1002/adma.201901131

    Article  CAS  Google Scholar 

  11. Kamaya, N., Homma, K., Yamakawa, Y., et al.: A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). https://doi.org/10.1038/nmat3066

    Article  CAS  PubMed  Google Scholar 

  12. Kato, Y., Hori, S., Saito, T., et al.: High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016). https://doi.org/10.1038/nenergy.2016.30

    Article  CAS  Google Scholar 

  13. Jung, S.K., Gwon, H., Hong, J., et al.: Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv. Energy Mater. 4, 1300787 (2014). https://doi.org/10.1002/aenm.201300787

    Article  CAS  Google Scholar 

  14. Poizot, P., Laruelle, S., Grugeon, S., et al.: Nano-sized transition–metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). https://doi.org/10.1038/35035045

    Article  CAS  PubMed  Google Scholar 

  15. Xin, S., You, Y., Wang, S.F., et al.: Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects. ACS Energy Lett. 2, 1385–1394 (2017). https://doi.org/10.1021/acsenergylett.7b00175

    Article  CAS  Google Scholar 

  16. Chen, L., Fan, L.Z.: Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte. Energy Storage Mater. 15, 37–45 (2018). https://doi.org/10.1016/j.ensm.2018.03.015

    Article  Google Scholar 

  17. Mercier, R., Malugani, J.P., Fahys, B., et al.: Superionic conduction in Li2S–P2S5–LiI-glasses. Solid State Ionics 5, 663–666 (1981). https://doi.org/10.1016/0167-2738(81)90341-6

    Article  CAS  Google Scholar 

  18. Hayashi, A., Yamashita, H., Tatsumisago, M., et al.: Characterization of Li2S–SiS2–LixMOy (M = Si, P, Ge) amorphous solid electrolytes prepared by melt-quenching and mechanical milling. Solid State Ionics 148, 381–389 (2002). https://doi.org/10.1016/S0167-2738(02)00077-2

    Article  CAS  Google Scholar 

  19. Kanno, R., Murayama, M.: Lithium ionic conductor thio-LISICON: the Li2S–GeS2–P2S5 system. J. Electrochem. Soc. 148, A742–A746 (2001)

    Article  CAS  Google Scholar 

  20. Hong, H.Y.: Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater. Res. Bull. 13, 117–124 (1978). https://doi.org/10.1016/0025-5408(78)90075-2

    Article  CAS  Google Scholar 

  21. Zhang, Z.Z., Shao, Y.J., Lotsch, B., et al.: New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018). https://doi.org/10.1039/c8ee01053f

    Article  CAS  Google Scholar 

  22. Hayashi, A., Hama, S., Minami, T., et al.: Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses. Electrochem. Commun. 5, 111–114 (2003). https://doi.org/10.1016/s1388-2481(02)00555-6

    Article  CAS  Google Scholar 

  23. Mizuno, F., Hayashi, A., Tadanaga, K., et al.: High lithium ion conducting glass–ceramics in the system Li2S–P2S5. Solid State Ionics 177, 2721–2725 (2006). https://doi.org/10.1016/j.ssi.2006.04.017

    Article  CAS  Google Scholar 

  24. Hayashi, A., Hama, S., Morimoto, H., et al.: Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 84, 477–479 (2004). https://doi.org/10.1111/j.1151-2916.2001.tb00685.x

    Article  Google Scholar 

  25. Mizuno, F., Hayashi, A., Tadanaga, K., et al.: New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater. 17, 918–921 (2005). https://doi.org/10.1002/adma.200401286

    Article  CAS  Google Scholar 

  26. Kudu, Ö.U., Famprikis, T., Fleutot, B., et al.: A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S–P2S5 binary system. J. Power Sources 407, 31–43 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.037

    Article  CAS  Google Scholar 

  27. Homma, K., Yonemura, M., Nagao, M., et al.: Crystal structure of high-temperature phase of lithium ionic conductor, Li3PS4. J. Phys. Soc. Jpn. 79, 90–93 (2010). https://doi.org/10.1143/jpsjs.79sa.90

    Article  Google Scholar 

  28. Iikubo, S., Shimoyama, K., Kawano, S., et al.: Novel stable structure of Li3PS4 predicted by evolutionary algorithm under high-pressure. AIP Adv. 8, 015008 (2018). https://doi.org/10.1063/1.5011401

    Article  CAS  Google Scholar 

  29. Homma, K., Yonemura, M., Kobayashi, T., et al.: Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ionics 182, 53–58 (2011). https://doi.org/10.1016/j.ssi.2010.10.001

    Article  CAS  Google Scholar 

  30. Yamane, H., Shibata, M., Shimane, Y., et al.: Crystal structure of a superionic conductor, Li7P3S11. Solid State Ionics 178, 1163–1167 (2007). https://doi.org/10.1016/j.ssi.2007.05.020

    Article  CAS  Google Scholar 

  31. Seino, Y., Ota, T., Takada, K., et al.: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014). https://doi.org/10.1039/c3ee41655k

    Article  CAS  Google Scholar 

  32. Chu, I.H., Nguyen, H., Hy, S., et al.: Insights into the performance limits of the Li7P3S11 superionic conductor: a combined first-principles and experimental study. ACS Appl. Mater. Interfaces 8, 7843–7853 (2016). https://doi.org/10.1021/acsami.6b00833

    Article  CAS  PubMed  Google Scholar 

  33. Ong, S.P., Mo, Y.F., Richards, W.D., et al.: Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ. Sci. 6, 148–156 (2013). https://doi.org/10.1039/c2ee23355j

    Article  CAS  Google Scholar 

  34. Bron, P., Johansson, S., Zick, K., et al.: Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013). https://doi.org/10.1021/ja407393y

    Article  CAS  PubMed  Google Scholar 

  35. Whiteley, J.M., Woo, J.H., Hu, E.Y., et al.: Empowering the lithium metal battery through a silicon-based superionic conductor. J. Electrochem. Soc. 161, A1812–A1817 (2014). https://doi.org/10.1149/2.0501412jes

    Article  CAS  Google Scholar 

  36. Zhou, P.F., Wang, J.B., Cheng, F.Y., et al.: A solid lithium superionic conductor Li11AlP2S12 with a thio-LISICON analogous structure. Chem. Commun. 52, 6091–6094 (2016). https://doi.org/10.1039/c6cc02131j

    Article  CAS  Google Scholar 

  37. Hayashi, A., Nishio, Y., Kitaura, H., et al.: Novel technique to form electrode–electrolyte nanointerface in all-solid-state rechargeable lithium batteries. Electrochem. Commun. 10, 1860–1863 (2008). https://doi.org/10.1016/j.elecom.2008.09.026

    Article  CAS  Google Scholar 

  38. Ziolkowska, D.A., Arnold, W., Druffel, T., et al.: Rapid and economic synthesis of a Li7PS6 solid electrolyte from a liquid approach. ACS Appl. Mater. Interfaces 11, 6015–6021 (2019). https://doi.org/10.1021/acsami.8b19181

    Article  CAS  PubMed  Google Scholar 

  39. Deiseroth, H.J., Kong, S.T., Eckert, H., et al.: Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed. 47, 755–758 (2008). https://doi.org/10.1002/anie.200703900

    Article  CAS  Google Scholar 

  40. de Klerk, N.J.J., Roslon, I., Wagemaker, M.: Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: the effect of Li vacancies, halogens, and halogen disorder. Chem. Mater. 28, 7955–7963 (2016). https://doi.org/10.1021/acs.chemmater.6b03630

    Article  CAS  Google Scholar 

  41. Rao, R., Adams, S.: Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys. Status Solidi A 208, 1804–1807 (2011). https://doi.org/10.1002/pssa.201001117

    Article  CAS  Google Scholar 

  42. Rayavarapu, P.R., Sharma, N., Peterson, V.K., et al.: Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes. J. Solid State Electrochem. 16, 1807–1813 (2012). https://doi.org/10.1007/s10008-011-1572-8

    Article  CAS  Google Scholar 

  43. Kraft, M.A., Ohno, S., Zinkevich, T., et al.: Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1–xGexS5I for all-solid-state batteries. J. Am. Chem. Soc. 140, 16330–16339 (2018). https://doi.org/10.1021/jacs.8b10282

    Article  CAS  PubMed  Google Scholar 

  44. Ge, Q., Zhou, L., Lian, Y.M., et al.: Metal-phosphide-doped Li7P3S11 glass-ceramic electrolyte with high ionic conductivity for all-solid-state lithium-sulfur batteries. Electrochem. Commun. 97, 100–104 (2018). https://doi.org/10.1016/j.elecom.2018.10.024

    Article  CAS  Google Scholar 

  45. Yu, C., Hageman, J., Ganapathy, S., et al.: Tailoring Li6PS5Br ionic conductivity and understanding of its role in cathode mixtures for high performance all-solid-state Li–S batteries. J. Mater. Chem. A 7, 10412–10421 (2019). https://doi.org/10.1039/c9ta02126d

    Article  CAS  Google Scholar 

  46. Kraft, M.A., Culver, S.P., Calderon, M., et al.: Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc. 139, 10909–10918 (2017). https://doi.org/10.1021/jacs.7b06327

    Article  CAS  PubMed  Google Scholar 

  47. Wang, S., Zhang, Y.B., Zhang, X., et al.: High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium–sulfur batteries. ACS Appl. Mater. Interfaces 10, 42279–42285 (2018). https://doi.org/10.1021/acsami.8b15121

    Article  CAS  PubMed  Google Scholar 

  48. Yu, C., Ganapathy, S., Hageman, J., et al.: Facile synthesis toward the optimal structure-conductivity characteristics of the argyrodite Li6PS5Cl solid-state electrolyte. ACS Appl. Mater. Interfaces 10, 33296–33306 (2018). https://doi.org/10.1021/acsami.8b07476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, D.: Processing of advanced materials using high-energy mechanical milling. Prog. Mater Sci. 49, 537–560 (2004). https://doi.org/10.1016/S0079-6425(03)00034-3

    Article  CAS  Google Scholar 

  50. Busche, M.R., Weber, D.A., Schneider, Y., et al.: In situ monitoring of fast Li-ion conductor Li7P3S11 crystallization inside a hot-press setup. Chem. Mater. 28, 6152–6165 (2016). https://doi.org/10.1021/acs.chemmater.6b02163

    Article  CAS  Google Scholar 

  51. Trevey, J., Jang, J.S., Jung, Y.S., et al.: Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries. Electrochem. Commun. 11, 1830–1833 (2009). https://doi.org/10.1016/j.elecom.2009.07.028

    Article  CAS  Google Scholar 

  52. Tao, Y.C., Chen, S.J., Liu, D., et al.: Lithium superionic conducting oxysulfide solid electrolyte with excellent stability against lithium metal for all-solid-state cells. J. Electrochem. Soc. 163, A96–A101 (2016). https://doi.org/10.1149/2.0311602jes

    Article  CAS  Google Scholar 

  53. Yamamoto, H., Machida, N., Shigematsu, T.: A mixed-former effect on lithium-ion conductivities of the Li2S–GeS2–P2S5 amorphous materials prepared by a high-energy ball-milling process. Solid State Ionics 175, 707–711 (2004). https://doi.org/10.1016/j.ssi.2004.08.028

    Article  CAS  Google Scholar 

  54. Chen, M.H., Adams, S.: High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte. J. Solid State Electrochem. 19, 697–702 (2015). https://doi.org/10.1007/s10008-014-2654-1

    Article  CAS  Google Scholar 

  55. Boulineau, S., Courty, M., Tarascon, J.M., et al.: Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 221, 1–5 (2012). https://doi.org/10.1016/j.ssi.2012.06.008

    Article  CAS  Google Scholar 

  56. Yu, C., van Eijck, L., Ganapathy, S., et al.: Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochim. Acta 215, 93–99 (2016). https://doi.org/10.1016/j.electacta.2016.08.081

    Article  CAS  Google Scholar 

  57. Liu, Z.C., Fu, W.J., Payzant, E.A., et al.: Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 135, 975–978 (2013). https://doi.org/10.1021/ja3110895

    Article  CAS  PubMed  Google Scholar 

  58. Yao, X.Y., Liu, D., Wang, C.S., et al.: High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Lett. 16, 7148–7154 (2016). https://doi.org/10.1021/acs.nanolett.6b03448

    Article  CAS  PubMed  Google Scholar 

  59. Phuc, N.H.H., Totani, M., Morikawa, K., et al.: Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium. Solid State Ionics 288, 240–243 (2016). https://doi.org/10.1016/j.ssi.2015.11.032

    Article  CAS  Google Scholar 

  60. Teragawa, S., Aso, K., Tadanaga, K., et al.: Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries. J. Mater. Chem. A 2, 5095 (2014). https://doi.org/10.1039/c3ta15090a

    Article  CAS  Google Scholar 

  61. Ito, S., Nakakita, M., Aihara, Y., et al.: A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent. J. Power Sources 271, 342–345 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.024

    Article  CAS  Google Scholar 

  62. Wan, H., Mwizerwa, J.P., Han, F., et al.: Grain-boundary-resistance-less Na3SbS4−xSex solid electrolytes for all-solid-state sodium batteries. Nano Energy 66, 104109 (2019). https://doi.org/10.1016/j.nanoen.2019.104109

    Article  CAS  Google Scholar 

  63. Yubuchi, S., Teragawa, S., Aso, K., et al.: Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries. J. Power Sources 293, 941–945 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.093

    Article  CAS  Google Scholar 

  64. Yubuchi, S., Uematsu, M., Hotehama, C., et al.: An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol. J. Mater. Chem. A 7, 558–566 (2019). https://doi.org/10.1039/c8ta09477b

    Article  CAS  Google Scholar 

  65. Choi, S., Ann, J., Do, J., et al.: Application of rod-like Li6PS5Cl directly synthesized by a liquid phase process to sheet-type electrodes for all-solid-state lithium batteries. J. Electrochem. Soc. 166, A5193–A5200 (2019). https://doi.org/10.1149/2.0301903jes

    Article  CAS  Google Scholar 

  66. Zhou, L.D., Park, K.H., Sun, X.Q., et al.: Solvent-engineered design of argyrodite Li6PS5X (X = Cl, Br, I) solid electrolytes with high ionic conductivity. ACS Energy Lett. 4, 265–270 (2019). https://doi.org/10.1021/acsenergylett.8b01997

    Article  CAS  Google Scholar 

  67. Xu, R.C., Xia, X.H., Wang, X.L., et al.: Tailored Li2S–P2S5 glass–ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium–sulfur batteries. J. Mater. Chem. A 5, 2829–2834 (2017). https://doi.org/10.1039/c6ta10142a

    Article  CAS  Google Scholar 

  68. Wu, Z.J., Xie, Z.K., Yoshida, A., et al.: Novel SeS2 doped Li2S–P2S5 solid electrolyte with high ionic conductivity for all-solid-state lithium sulfur batteries. Chem. Eng. J. 380, 122419 (2020). https://doi.org/10.1016/j.cej.2019.122419

    Article  CAS  Google Scholar 

  69. Yamauchi, A., Sakuda, A., Hayashi, A., et al.: Preparation and ionic conductivities of (100 − x)(0.75Li2S·0.25P2S5xLiBH4 glass electrolytes. J. Power Sources 244, 707–710 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.001

  70. Huang, B.X., Yao, X.Y., Huang, Z., et al.: Li3PO4-doped Li7P3S11 glass–ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries. J. Power Sources 284, 206–211 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.160

    Article  CAS  Google Scholar 

  71. Kim, K., Martin, S.W.: Structures and properties of oxygen-substituted Li10SiP2S12−xOx solid-state electrolytes. Chem. Mater. 31, 3984–3991 (2019). https://doi.org/10.1021/acs.chemmater.9b00505

    Article  CAS  Google Scholar 

  72. Ujiie, S., Inagaki, T., Hayashi, A., et al.: Conductivity of 70Li2S·30P2S5 glasses and glass–ceramics added with lithium halides. Solid State Ionics 263, 57–61 (2014). https://doi.org/10.1016/j.ssi.2014.05.002

    Article  CAS  Google Scholar 

  73. Ujiie, S., Hayashi, A., Tatsumisago, M.: Structure, ionic conductivity and electrochemical stability of Li2S–P2S5–LiI glass and glass–ceramic electrolytes. Solid State Ionics 211, 42–45 (2012). https://doi.org/10.1016/j.ssi.2012.01.017

    Article  CAS  Google Scholar 

  74. Adeli, P., Bazak, J.D., Park, K.H., et al.: Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed. 58, 8681–8686 (2019). https://doi.org/10.1002/anie.201814222

    Article  CAS  Google Scholar 

  75. Xiong, L.L., Xu, Y.L., Tao, T., et al.: Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries. J. Power Sources 199, 214–219 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.062

    Article  CAS  Google Scholar 

  76. Guo, H.L., Gao, Q.M.: Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. J. Power Sources 186, 551–556 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.024

    Article  CAS  Google Scholar 

  77. Yang, K., Dong, J.Y., Zhang, L., et al.: Dual doping: an effective method to enhance the electrochemical properties of Li10GeP2S12-based solid electrolytes. J. Am. Ceram. Soc. 98, 3831–3835 (2015). https://doi.org/10.1111/jace.13800

    Article  CAS  Google Scholar 

  78. Sun, Y.L., Suzuki, K., Hori, S., et al.: Superionic conductors: Li10+δ[SnySi1–y]1+δP2−δS12 with a Li10GeP2S12-type structure In the Li3PS4–Li4SnS4–Li4SiS4 quasi-ternary system. Chem. Mater. 29, 5858–5864 (2017). https://doi.org/10.1021/acs.chemmater.7b00886

    Article  CAS  Google Scholar 

  79. Minami, K., Hayashi, A., Tatsumisago, M.: Crystallization process for superionic Li7P3S11 glass–ceramic electrolytes. J. Am. Ceram. Soc. 94, 1779–1783 (2011). https://doi.org/10.1111/j.1551-2916.2010.04335.x

    Article  CAS  Google Scholar 

  80. Chen, S.J., Xie, D.J., Liu, G.Z., et al.: Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application. Energy Storage Mater. 14, 58–74 (2018). https://doi.org/10.1016/j.ensm.2018.02.020

    Article  Google Scholar 

  81. Auvergniot, J., Cassel, A., Ledeuil, J.B., et al.: Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017). https://doi.org/10.1021/acs.chemmater.6b04990

    Article  CAS  Google Scholar 

  82. Sumita, M., Tanaka, Y., Ohno, T.: Possible polymerization of PS4 at a Li3PS4/FePO4 interface with reduction of the FePO4 phase. J. Phys. Chem. C 121, 9698–9704 (2017). https://doi.org/10.1021/acs.jpcc.7b01009

    Article  CAS  Google Scholar 

  83. Haruyama, J., Sodeyama, K., Han, L.Y., et al.: Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater. 26, 4248–4255 (2014). https://doi.org/10.1021/cm5016959

    Article  CAS  Google Scholar 

  84. Takada, K., Ohta, N., Zhang, L.Q., et al.: Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte. Solid State Ionics 225, 594–597 (2012). https://doi.org/10.1016/j.ssi.2012.01.009

    Article  CAS  Google Scholar 

  85. Ohta, N., Takada, K., Zhang, L., et al.: Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater. 18, 2226–2229 (2006). https://doi.org/10.1002/adma.200502604

    Article  CAS  Google Scholar 

  86. Haruyama, J., Sodeyama, K., Tateyama, Y.: Cation mixing properties toward Co diffusion at the LiCoO2 cathode/sulfide electrolyte interface in a solid-state battery. ACS Appl. Mater Interfaces 9, 286–292 (2017). https://doi.org/10.1021/acsami.6b08435

  87. Richards, W.D., Miara, L.J., Wang, Y., et al.: Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016). https://doi.org/10.1021/acs.chemmater.5b04082

    Article  CAS  Google Scholar 

  88. Sumita, M., Tanaka, Y., Ikeda, M., et al.: Charged and discharged states of cathode/sulfide electrolyte interfaces in all-solid-state lithium ion batteries. J. Phys. Chem. C 120, 13332–13339 (2016). https://doi.org/10.1021/acs.jpcc.6b01207

    Article  CAS  Google Scholar 

  89. Oh, G., Hirayama, M., Kwon, O., et al.: Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte. Chem. Mater. 28, 2634–2640 (2016). https://doi.org/10.1021/acs.chemmater.5b04940

  90. Sakuda, A., Hayashi, A., Tatsumisago, M.: Interfacial observation between LiCoO2 electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem. Mater. 22, 949–956 (2010). https://doi.org/10.1021/cm901819c

    Article  CAS  Google Scholar 

  91. Kwak, H.W., Park, Y.J.: Cathode coating using LiInO2−LiI composite for stable sulfide-based all-solid-state batteries. Sci. Rep. 9, 8099 (2019). https://doi.org/10.1038/s41598-019-44629-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhu, Y.Z., He, X.F., Mo, Y.F.: First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. 4, 3253–3266 (2016). https://doi.org/10.1039/C5TA08574H

    Article  CAS  Google Scholar 

  93. Koerver, R., Aygün, I., Leichtweiß, T., et al.: Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017)

    Article  CAS  Google Scholar 

  94. Takada, K.: Interfacial nanoarchitectonics for solid-state lithium batteries. Langmuir 29, 7538–7541 (2013). https://doi.org/10.1021/la3045253

  95. Xu, L., Tang, S., Cheng, Y., et al.: Interfaces in solid-state lithium batteries. Joule 2, 1991–2015 (2018). https://doi.org/10.1016/j.joule.2018.07.009

    Article  CAS  Google Scholar 

  96. Nam, Y.J., Cho, S.J., Oh, D.Y., et al.: Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. Nano Lett. 15, 3317–3323 (2015). https://doi.org/10.1021/acs.nanolett.5b00538

    Article  CAS  PubMed  Google Scholar 

  97. Yao, L., Liang, F.Q., Jin, J., et al.: Improved electrochemical property of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via in situ ZrO2 coating for high energy density lithium ion batteries. Chem. Eng. J. 389, 124403 (2020). https://doi.org/10.1016/j.cej.2020.124403

  98. Zhu, Y., He, X., Mo, Y.: Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517

  99. McGrogan, F.P., Swamy, T., Bishop, S.R., et al.: Compliant yet brittle mechanical behavior of Li2S–P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater. 7, 1602011 (2017). https://doi.org/10.1002/aenm.201602011

    Article  CAS  Google Scholar 

  100. Li, X.L., Liang, M., Sheng, J., et al.: Constructing double buffer layers to boost electrochemical performances of NCA cathode for ASSLB. Energy Storage Mater. 18, 100–106 (2019). https://doi.org/10.1016/j.ensm.2018.10.003

    Article  Google Scholar 

  101. Ohta, N., Takada, K., Sakaguchi, I., et al.: LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem. Commun. 9, 1486–1490 (2007). https://doi.org/10.1016/j.elecom.2007.02.008

    Article  CAS  Google Scholar 

  102. Seino, Y., Ota, T., Takada, K.: High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8Co0.15Al0.05O2 and a sulfide-based solid electrolyte. J. Power Sources 196, 6488–6492 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.090

  103. Jung, S.H., Oh, K., Nam, Y.J., et al.: Li3BO3–Li2CO3: rationally designed buffering phase for sulfide all-solid-state Li-ion batteries. Chem. Mater. 30, 8190–8200 (2018). https://doi.org/10.1021/acs.chemmater.8b03321

    Article  CAS  Google Scholar 

  104. Glass, A.M., Nassau, K., Negran, T.J.: Ionic conductivity of quenched alkali niobate and tantalate glasses. J. Appl. Phys. 49, 4808–4811 (1978). https://doi.org/10.1063/1.325509

    Article  CAS  Google Scholar 

  105. Sakuda, A., Kitaura, H., Hayashi, A., et al.: All-solid-state lithium secondary batteries with oxide-coated LiCoO2 electrode and Li2S–P2S5 electrolyte. J. Power Sources 189, 527–530 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.129

    Article  CAS  Google Scholar 

  106. Zhao, Y., Zheng, K., Sun, X.: Addressing interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer deposition. Joule 2, 2583–2604 (2018). https://doi.org/10.1016/j.joule.2018.11.012

    Article  CAS  Google Scholar 

  107. Ahmed, B., Xia, C., Alshareef, H.N.: Electrode surface engineering by atomic layer deposition: a promising pathway toward better energy storage. Nano Today 11, 250–271 (2016). https://doi.org/10.1016/j.nantod.2016.04.004

    Article  CAS  Google Scholar 

  108. Wang, B.Q., Liu, J., Sun, Q., et al.: Titanium dioxide/lithium phosphate nanocomposite derived from atomic layer deposition as a high-performance anode for lithium ion batteries. Adv. Mater. Interfaces 3, 1600369 (2016). https://doi.org/10.1002/admi.201600369

    Article  CAS  Google Scholar 

  109. Li, X.F., Liu, J., Banis, M.N., et al.: Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ. Sci. 7, 768–778 (2014). https://doi.org/10.1039/c3ee42704h

    Article  CAS  Google Scholar 

  110. Groner, M.D., Fabreguette, F.H., Elam, J.W., et al.: Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 16, 639–645 (2004). https://doi.org/10.1021/cm0304546

    Article  CAS  Google Scholar 

  111. Wang, B.Q., Zhao, Y., Banis, M.N., et al.: Atomic layer deposition of lithium niobium oxides as potential solid-state electrolytes for lithium-ion batteries. ACS Appl. Mater. Interfaces. 10, 1654–1661 (2018). https://doi.org/10.1021/acsami.7b13467

    Article  CAS  PubMed  Google Scholar 

  112. Woo, J.H., Trevey, J.E., Cavanagh, A.S., et al.: Nanoscale interface modification of LiCoO2 by Al2O3 atomic layer deposition for solid-state Li batteries. J. Electrochem. Soc. 159, A1120–A1124 (2012). https://doi.org/10.1149/2.085207jes

    Article  CAS  Google Scholar 

  113. Li, X., Ren, Z.H., Norouzi Banis, M., et al.: Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries. ACS Energy Lett. 4, 2480–2488 (2019). https://doi.org/10.1021/acsenergylett.9b01676

    Article  CAS  Google Scholar 

  114. Meng, X.B., Liu, J., Li, X.F., et al.: Atomic layer deposited Li4Ti5O12 on nitrogen-doped carbon nanotubes. RSC Advances 3, 7285–7288 (2013)

    Article  CAS  Google Scholar 

  115. Wang, B.Q., Liu, J., Banis, M.N., et al.: Atomic layer deposited lithium silicates as solid-state electrolytes for all-solid-state batteries. ACS Appl. Mater. Interfaces 9, 31786–31793 (2017). https://doi.org/10.1021/acsami.7b07113

    Article  CAS  PubMed  Google Scholar 

  116. Wang, B., Liu, J., Sun, Q., et al.: Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries. Nanotechnology 25, 504007 (2014). https://doi.org/10.1088/0957-4484/25/50/504007

  117. Liu, J., Banis, M.N., Li, X.F., et al.: Atomic layer deposition of lithium tantalate solid-state electrolytes. J. Phys. Chem. C 117, 20260–20267 (2013). https://doi.org/10.1021/jp4063302

    Article  CAS  Google Scholar 

  118. Kozen, A.C., Pearse, A.J., Lin, C.F., et al.: Atomic layer deposition of the solid electrolyte LiPON. Chem. Mater. 27, 5324–5331 (2015). https://doi.org/10.1021/acs.chemmater.5b01654

    Article  CAS  Google Scholar 

  119. Kazyak, E., Chen, K.H., Davis, A.L., et al.: Atomic layer deposition and first principles modeling of glassy Li3BO3–Li2CO3 electrolytes for solid-state Li metal batteries. J. Mater. Chem. A 6, 19425–19437 (2018). https://doi.org/10.1039/c8ta08761j

    Article  CAS  Google Scholar 

  120. Yubuchi, S., Ito, Y., Matsuyama, T., et al.: 5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte. Solid State Ionics 285, 79–82 (2016). https://doi.org/10.1016/j.ssi.2015.08.001

  121. Sakuda, A., Hayashi, A., Ohtomo, T., et al.: LiCoO2 electrode particles coated with Li2S–P2S5 solid electrolyte for all-solid-state batteries. Electrochem. Solid-State Lett. 13, A73 (2010). https://doi.org/10.1149/1.3376620

    Article  CAS  Google Scholar 

  122. Sakuda, A., Hayashi, A., Ohtomo, T., et al.: All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes. J. Power Sources 196, 6735–6741 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.103

    Article  CAS  Google Scholar 

  123. Zhou, A., Dai, X., Lu, Y., et al.: Enhanced interfacial kinetics and high-voltage/high-rate performance of LiCoO2 cathode by controlled sputter-coating with a nanoscale Li4Ti5O12 ionic conductor. ACS Appl. Mater. Interfaces 8, 34123–34131 (2016). https://doi.org/10.1021/acsami.6b11630%5bPubMed]

  124. Dai, X.Y., Wang, L.P., Xu, J., et al.: Improved electrochemical performance of LiCoO2 electrodes with ZnO coating by radio frequency magnetron sputtering. ACS Appl. Mater. Interfaces 6, 15853–15859 (2014). https://doi.org/10.1021/am503260s

    Article  CAS  PubMed  Google Scholar 

  125. Qiu, B., Wang, J., Xia, Y.G., et al.: Enhanced electrochemical performance with surface coating by reactive magnetron sputtering on lithium-rich layered oxide electrodes. ACS Appl. Mater. Interfaces 6, 9185–9193 (2014). https://doi.org/10.1021/am501293y

    Article  CAS  PubMed  Google Scholar 

  126. Visbal, H., Aihara, Y., Ito, S., et al.: The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S–P2S5 glass–ceramics. J. Power Sources 314, 85–92 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.088

  127. Ohtomo, T., Hayashi, A., Tatsumisago, M., et al.: All-solid-state batteries with Li2O–Li2S–P2S5 glass electrolytes synthesized by two-step mechanical milling. J. Solid State Electrochem. 17, 2551–2557 (2013). https://doi.org/10.1007/s10008-013-2149-5

    Article  CAS  Google Scholar 

  128. Xu, H.J., Yu, Y.R., Wang, Z., et al.: A theoretical approach to address interfacial problems in all-solid-state lithium ion batteries: tuning materials chemistry for electrolyte and buffer coatings based on Li6PA5Cl hali-chalcogenides. J. Mater. Chem. A 7, 5239–5247 (2019). https://doi.org/10.1039/c8ta11151k

    Article  CAS  Google Scholar 

  129. Zhang, Z.X., Zhang, L., Yan, X.L., et al.: All-in-one improvement toward Li6PS5Br based solid electrolytes triggered by compositional tune. J. Power Sources 410(411), 162–170 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.016

    Article  CAS  Google Scholar 

  130. Peng, G., Yao, X.Y., Wan, H.L., et al.: Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte. J. Power Sources 307, 724–730 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.039

  131. Calpa, M., Rosero-Navarro, N.C., Miura, A., et al.: Electrochemical performance of bulk-type all-solid-state batteries using small-sized Li7P3S11 solid electrolyte prepared by liquid phase as the ionic conductor in the composite cathode. Electrochim. Acta 296, 473–480 (2019). https://doi.org/10.1016/j.electacta.2018.11.035

    Article  CAS  Google Scholar 

  132. Kim, D.H., Oh, D.Y., Park, K.H., et al.: Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 17, 3013–3020 (2017). https://doi.org/10.1021/acs.nanolett.7b00330

  133. Yubuchi, S., Nakamura, W., Bibienne, T., et al.: All-solid-state cells with Li4Ti5O12/carbon nanotube composite electrodes prepared by infiltration with argyrodite sulfide-based solid electrolytes via liquid-phase processing. J. Power Sources 417, 125–131 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.070

    Article  CAS  Google Scholar 

  134. Rosero-Navarro, N.C., Miura, A., Tadanaga, K.: Composite cathode prepared by argyrodite precursor solution assisted by dispersant agents for bulk-type all-solid-state batteries. J. Power Sources 396, 33–40 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.011

    Article  CAS  Google Scholar 

  135. Wang, D., Zhang, W., Zheng, W.T., et al.: Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Adv. Sci. 4, 1600168 (2017). https://doi.org/10.1002/advs.201600168

    Article  CAS  Google Scholar 

  136. Cheng, X.B., Hou, T.Z., Zhang, R., et al.: Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28, 2888–2895 (2016). https://doi.org/10.1002/adma.201506124

    Article  CAS  PubMed  Google Scholar 

  137. Sun, C.Z., Ruan, Y.D., Zha, W.P., et al.: Recent advances in anodic interface engineering for solid-state lithium-metal batteries. Mater. Horiz. 7, 1667–1696 (2020). https://doi.org/10.1039/d0mh00050g

    Article  CAS  Google Scholar 

  138. Wenzel, S., Leichtweiss, T., Krüger, D., et al.: Interphase formation on lithium solid electrolytes: an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ionics 278, 98–105 (2015). https://doi.org/10.1016/j.ssi.2015.06.001

    Article  CAS  Google Scholar 

  139. Wenzel, S., Randau, S., Leichtweiß, T., et al.: Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016). https://doi.org/10.1021/acs.chemmater.6b00610

    Article  CAS  Google Scholar 

  140. Hakari, T., Deguchi, M., Mitsuhara, K., et al.: Structural and electronic-state changes of a sulfide solid electrolyte during the Li deinsertion–insertion processes. Chem. Mater. 29, 4768–4774 (2017). https://doi.org/10.1021/acs.chemmater.7b00551

    Article  CAS  Google Scholar 

  141. Wenzel, S., Weber, D.A., Leichtweiss, T., et al.: Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ionics 286, 24–33 (2016). https://doi.org/10.1016/j.ssi.2015.11.034

    Article  CAS  Google Scholar 

  142. Camacho-Forero, L.E., Balbuena, P.B.: Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface. J. Power Sources 396, 782–790 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.092

    Article  CAS  Google Scholar 

  143. Bron, P., Roling, B., Dehnen, S.: Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes. J. Power Sources 352, 127–134 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.103

    Article  CAS  Google Scholar 

  144. Wenzel, S., Sedlmaier, S.J., Dietrich, C., et al.: Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics 318, 102–112 (2018). https://doi.org/10.1016/j.ssi.2017.07.005

    Article  CAS  Google Scholar 

  145. Wang, X.L., Xiao, R.J., Li, H., et al.: Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li3PS4 electrolyte. Phys. Chem. Chem. Phys. 18, 21269–21277 (2016). https://doi.org/10.1039/c6cp03179j

    Article  CAS  PubMed  Google Scholar 

  146. Xie, D.J., Chen, S.J., Zhang, Z.H., et al.: High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries. J. Power Sources 389, 140–147 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.021

    Article  CAS  Google Scholar 

  147. Liu, G.Z., Xie, D.J., Wang, X.L., et al.: High air-stability and superior lithium ion conduction of Li3+3xP1-xZnxS4-xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries. Energy Storage Mater. 17, 266–274 (2019). https://doi.org/10.1016/j.ensm.2018.07.008

    Article  Google Scholar 

  148. Mo, Y., Ong, S.P., Ceder, G.: First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15–17 (2012). https://doi.org/10.1021/cm203303y

    Article  CAS  Google Scholar 

  149. Sun, Y.L., Suzuki, K., Hara, K., et al.: Oxygen substitution effects in Li10GeP2S12 solid electrolyte. J. Power Sources 324, 798–803 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.100

    Article  CAS  Google Scholar 

  150. Hu, C.H., Wang, Z.Q., Sun, Z.Y., et al.: Insights into structural stability and Li superionic conductivity of Li10GeP2S12 from first-principles calculations. Chem. Phys. Lett. 591, 16–20 (2014). https://doi.org/10.1016/j.cplett.2013.11.003

    Article  CAS  Google Scholar 

  151. Sun, Y., Yan, W.N., An, L., et al.: A facile strategy to improve the electrochemical stability of a lithium ion conducting Li10GeP2S12 solid electrolyte. Solid State Ionics 301, 59–63 (2017). https://doi.org/10.1016/j.ssi.2017.01.014

    Article  CAS  Google Scholar 

  152. Zhang, Z., Chen, S., Yang, J., et al.: Interface Re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl. Mater. Interfaces 10, 2556–2565 (2018). https://doi.org/10.1021/acsami.7b16176

  153. Chien, P.H., Feng, X., Tang, M., et al.: Li Distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI. J. Phys. Chem. Lett. 9, 1990–1998 (2018)

    Article  CAS  Google Scholar 

  154. Wang, C.H., Adair, K.R., Liang, J.W., et al.: Solid-state plastic crystal electrolytes: effective protection interlayers for sulfide-based all-solid-state lithium metal batteries. Adv. Funct. Mater. 29, 1900392 (2019). https://doi.org/10.1002/adfm.201900392

    Article  CAS  Google Scholar 

  155. Gao, Y., Wang, D.W., Li, Y.C., et al.: Salt-based organic-inorganic nanocomposites: towards A stable lithium metal/Li10GeP2S12 solid electrolyte interface. Angew. Chem. Int. Ed. 57, 13608–13612 (2018). https://doi.org/10.1002/anie.201807304

    Article  CAS  Google Scholar 

  156. Ju, J.W., Wang, Y.T., Chen, B.B., et al.: Integrated interface strategy toward room temperature solid-state lithium batteries. ACS Appl. Mater. Interfaces 10, 13588–13597 (2018). https://doi.org/10.1021/acsami.8b02240

    Article  CAS  PubMed  Google Scholar 

  157. Monroe, C., Newman, J.: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005). https://doi.org/10.1149/1.1850854

    Article  CAS  Google Scholar 

  158. Nagao, M., Hayashi, A., Tatsumisago, M., et al.: In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte. Phys. Chem. Chem. Phys. 15, 18600 (2013). https://doi.org/10.1039/c3cp51059j

    Article  CAS  PubMed  Google Scholar 

  159. Kerman, K., Luntz, A., Viswanathan, V., et al.: Review: practical challenges hindering the development of solid state Li ion batteries. J. Electrochem. Soc. 164, A1731–A1744 (2017). https://doi.org/10.1149/2.1571707jes

    Article  CAS  Google Scholar 

  160. Han, F.D., Yue, J., Zhu, X.Y., et al.: Suppressing Li dendrite formation in Li2S–P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater. 8, 1703644 (2018). https://doi.org/10.1002/aenm.201703644

    Article  CAS  Google Scholar 

  161. Porz, L., Swamy, T., Sheldon, B.W., et al.: Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017). https://doi.org/10.1002/aenm.201701003

    Article  CAS  Google Scholar 

  162. Han, F.D., Westover, A.S., Yue, J., et al.: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019). https://doi.org/10.1038/s41560-018-0312-z

    Article  CAS  Google Scholar 

  163. Kasemchainan, J., Zekoll, S., Spencer Jolly, D., et al.: Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019). https://doi.org/10.1038/s41563-019-0438-9

    Article  CAS  PubMed  Google Scholar 

  164. Suyama, M., Kato, A., Sakuda, A., et al.: Lithium dissolution/deposition behavior with Li3PS4–LiI electrolyte for all-solid-state batteries operating at high temperatures. Electrochim. Acta 286, 158–162 (2018). https://doi.org/10.1016/j.electacta.2018.07.227

    Article  CAS  Google Scholar 

  165. Xu, R.C., Han, F.D., Ji, X., et al.: Interface engineering of sulfide electrolytes for all-solid-state lithium batteries. Nano Energy 53, 958–966 (2018). https://doi.org/10.1016/j.nanoen.2018.09.061

    Article  CAS  Google Scholar 

  166. Wang, C., Zhao, Y., Sun, Q., et al.: Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition. Nano Energy 53, 168–174 (2018). https://doi.org/10.1016/j.nanoen.2018.08.030

    Article  CAS  Google Scholar 

  167. Takeuchi, T., Kageyama, H., Nakanishi, K., et al.: Application of graphite–solid electrolyte composite anode in all-solid-state lithium secondary battery with Li2S positive electrode. Solid State Ionics 262, 138–142 (2014). https://doi.org/10.1016/j.ssi.2013.09.046

    Article  CAS  Google Scholar 

  168. Takada, K.: Solid-state lithium battery with graphite anode. Solid State Ionics 158, 269–274 (2003). https://doi.org/10.1016/s0167-2738(02)00823-8

    Article  CAS  Google Scholar 

  169. Yamamoto, T., Phuc, N.H.H., Muto, H., et al.: Preparation of Li7P2S8I solid electrolyte and its application in all-solid-state lithium-ion batteries with graphite anode. Electron. Mater. Lett. 15, 409–414 (2019). https://doi.org/10.1007/s13391-019-00133-y

    Article  CAS  Google Scholar 

  170. Zuo, X., Zhu, J., Mullerbuschbaum, P., et al.: Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013

    Article  CAS  Google Scholar 

  171. Kim, D.H., Lee, H.A., Song, Y.B., et al.: Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries. J. Power Sources 426, 143–150 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.028

    Article  CAS  Google Scholar 

  172. Dunlap, N.A., Kim, S., Jeong, J.J., et al.: Simple and inexpensive coal-tar-pitch derived Si–C anode composite for all-solid-state Li-ion batteries. Solid State Ionics 324, 207–217 (2018). https://doi.org/10.1016/j.ssi.2018.07.013

    Article  CAS  Google Scholar 

  173. Cao, Y., Li, Q., Lou, S.F., et al.: Enhanced electrochemical performance of Li4Ti5O12 through in situ coating 70Li2S–30P2S5 solid electrolyte for all-solid-state lithium batteries. J. Alloys Compd. 752, 8–13 (2018). https://doi.org/10.1016/j.jallcom.2018.04.149

    Article  CAS  Google Scholar 

  174. Hwang, A., Ma, Y., Cao, Y., et al.: Fabrication and electrochemical properties of Li4Ti5O12@Li6PS5Cl for all-solid-state lithium batteries using simple mechanical method. Int. J. Electrochem. Sci. (2017). https://doi.org/10.20964/2017.08.29

  175. Zhang, N., Ding, F., Yu, S.H., et al.: Novel research approach combined with dielectric spectrum testing for dual-doped Li7P3S11 glass–ceramic electrolytes. ACS Appl. Mater. Interfaces 11, 27897–27905 (2019). https://doi.org/10.1021/acsami.9b08218

    Article  CAS  PubMed  Google Scholar 

  176. Minami, K., Hayashi, A., Tatsumisago, M.: Electrical and electrochemical properties of the 70Li2S·(30 − x)P2S5·xP2O5 glass–ceramic electrolytes. Solid State Ionics 179, 1282–1285 (2008). https://doi.org/10.1016/j.ssi.2008.02.014

    Article  CAS  Google Scholar 

  177. Kondo, S., Takada, K., Yamamura, Y.: New lithium ion conductors based on Li2S–SiS2 system. Solid State Ionics 53/54/55/56, 1183–1186 (1992). https://doi.org/10.1016/0167-2738(92)90310-l

  178. Kanno, R.: Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system. Solid State Ionics 130, 97–104 (2000). https://doi.org/10.1016/s0167-2738(00)00277-0

    Article  CAS  Google Scholar 

  179. Kaib, T., Haddadpour, S., Kapitein, M., et al.: New lithium chalcogenidotetrelates, LiChT: synthesis and characterization of the Li+-conducting tetralithium ortho-sulfidostannate Li4SnS4. Chem. Mater. 24, 2211–2219 (2012). https://doi.org/10.1021/cm3011315

    Article  CAS  Google Scholar 

  180. Trevey, J.E., Jung, Y.S., Lee, S.: High lithium ion conducting Li2S–GeS2–P2S5 glass–ceramic solid electrolyte with sulfur additive for all solid-state lithium secondary batteries. Electrochim. Acta 56, 4243–4247 (2011). https://doi.org/10.1016/j.electacta.2011.01.086

    Article  CAS  Google Scholar 

  181. Tsukasaki, H., Mori, S., Shiotani, S., et al.: Direct observation of a non-isothermal crystallization process in precursor Li10GeP2S12 glass electrolyte. J. Power Sources 369, 57–64 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.070

    Article  CAS  Google Scholar 

  182. Kwon, O., Hirayama, M., Suzuki, K., et al.: Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2–δS12. J. Mater. Chem. A 3, 438–446 (2015). https://doi.org/10.1039/c4ta05231e

    Article  CAS  Google Scholar 

  183. Zhang, Q., Wan, H., Liu, G., et al.: Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries. Nano Energy 57, 771–782 (2019). https://doi.org/10.1016/j.nanoen.2019.01.004

    Article  CAS  Google Scholar 

  184. Bron, P., Dehnen, S., Roling, B.: Li10Si0.3Sn0.7P2S12—a low-cost and low-grain-boundary-resistance lithium superionic conductor. J. Power Sources 329, 530–535 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.115

  185. Ooura, Y., Machida, N., Naito, M., et al.: Electrochemical properties of the amorphous solid electrolytes in the system Li2S–Al2S3–P2S5. Solid State Ionics 225, 350–353 (2012). https://doi.org/10.1016/j.ssi.2012.03.003

    Article  CAS  Google Scholar 

  186. Kato, Y., Saito, R., Sakano, M., et al.: Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1−xMx)P2S12 (M = Si, Sn). J. Power Sources 271, 60–64 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.159

    Article  CAS  Google Scholar 

  187. Zhou, L.D., Assoud, A., Zhang, Q., et al.: New family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc. 141, 19002–19013 (2019). https://doi.org/10.1021/jacs.9b08357

    Article  CAS  PubMed  Google Scholar 

  188. Minafra, N., Culver, S.P., Krauskopf, T., et al.: Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites. J. Mater. Chem. A 6, 645–651 (2018). https://doi.org/10.1039/c7ta08581h

    Article  CAS  Google Scholar 

  189. Yubuchi, S., Uematsu, M., Deguchi, M., et al.: Lithium-ion-conducting argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes prepared by a liquid-phase technique using ethanol as a solvent. ACS Appl. Energy Mater. 1, 3622–3629 (2018). https://doi.org/10.1021/acsaem.8b00280

    Article  CAS  Google Scholar 

  190. Machida, N., Kashiwagi, J., Naito, M., et al.: Electrochemical properties of all-solid-state batteries with ZrO2-coated LiNi1/3Mn1/3Co1/3O2 as cathode materials. Solid State Ionics 225, 354–358 (2012). https://doi.org/10.1016/j.ssi.2011.11.026

    Article  CAS  Google Scholar 

  191. Okada, K., Machida, N., Naito, M., et al.: Preparation and electrochemical properties of LiAlO2-coated Li(Ni1/3Mn1/3Co1/3)O2 for all-solid-state batteries. Solid State Ionics 255, 120–127 (2014). https://doi.org/10.1016/j.ssi.2013.12.019

    Article  CAS  Google Scholar 

  192. Takada, K., Ohta, N., Zhang, L.Q., et al.: Interfacial modification for high-power solid-state lithium batteries. Solid State Ionics 179, 1333–1337 (2008). https://doi.org/10.1016/j.ssi.2008.02.017

    Article  CAS  Google Scholar 

  193. Kim, J., Kim, M., Noh, S., et al.: Enhanced electrochemical performance of surface modified LiCoO2 for all-solid-state lithium batteries. Ceram. Int. 42, 2140–2146 (2016). https://doi.org/10.1016/j.ceramint.2015.09.126

    Article  CAS  Google Scholar 

  194. Ito, S., Fujiki, S., Yamada, T., et al.: A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte. J. Power Sources 248, 943–950 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.005

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2018YFB0905400), the National Natural Science Foundation of China (Grant Nos. 51872303, U1964205, 51902321), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LD18E020004, LY18E020018), the Ningbo S&T Innovation 2025 Major Special Programme (Grant Nos. 2018B10061, 2018B10087, 2019B10044), the Natural Science Foundation of Ningbo (Grant Nos. 2018A610010, 2019A610007), the Jiangxi Provincial Key R&D Program of China (Grant No. 20182ABC28007) and the Youth Innovation Promotion Association CAS (2017342).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoxiong Xu or Xiayin Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Shen, L., Zhang, Z. et al. All-Solid-State Lithium Batteries with Sulfide Electrolytes and Oxide Cathodes. Electrochem. Energ. Rev. 4, 101–135 (2021). https://doi.org/10.1007/s41918-020-00081-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-020-00081-4

Keywords

Navigation