Skip to main content
Log in

An Efficient Method for Solving Systems of Linear Ordinary and Fractional Differential Equations

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

This paper presents a reliable approach for solving linear systems of ordinary and fractional differential equations. First, the FDEs or ODEs of a system with initial conditions to be solved are transformed to Volterra integral equations. Then Taylor expansion for the unknown function and integration method are employed to reduce the resulting integral equations to a new system of linear equations for the unknown and its derivatives. The fractional derivatives are considered in the Riemann–Liouville sense. Some numerical illustrations are given to demonstrate the effectiveness of the proposed method in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Atanackovic, T.M., Stankovic, B.: On a system of differential equations with fractional derivatives arising in rod theory. J. Phys. A. 37, 1241–1250 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bagley, R.L., Torvik, P.L.: On the fractional calculus models of viscoelastic behaviour. J. Rheol. 30, 133–155 (1986)

    Article  MATH  Google Scholar 

  3. Bonilla, B., Rivero, M., Trujillo, J.J.: On systems of linear fractional differential equations with constant coefficients. Appl. Math. Comput. 187, 68–78 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonilla, B., Rivero, M., Rodrguez-Germ, L., Trujillo, J.J.: Fractional differential equations as alternative models to nonlinear differential equations. Appl. Math. Comput. 187(1), 79–88 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Daftardar-Gejji, V., Babakhani, A.: Analysis of a system of fractional differential equations. J. Math. Anal. Appl. 293, 511–522 (2044)

    Article  MathSciNet  Google Scholar 

  6. Duan, J.-S., Temuer, C.-L., Sun, J.: Solution for system of linear fractional differential equations with constant coefficients. J. Math. 29, 509–603 (2009)

    MathSciNet  Google Scholar 

  7. Gao, X., Yu, J.: Synchronization of two coupled fractional-order chaotic oscillators. Chaos Solitons Fractals 26(1), 141–145 (2005)

    Article  MATH  Google Scholar 

  8. Gaul, L., Klein, P., Kempfle, S.: Damping description involving fractional operators. Mech. Syst. Signal Process. 5, 81–88 (1991)

    Article  Google Scholar 

  9. Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91(3), 034101–034104 (2003)

    Article  Google Scholar 

  10. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific Publishing Company, Singapore (2000)

    Book  MATH  Google Scholar 

  11. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  12. Li, X.-F.: Approximate solution of linear ordinary differential equations with variable coefficients. Math. Comput. Simul. 75, 113–125 (2007)

    Article  MATH  Google Scholar 

  13. Lu, J.G.: Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons Fractals 26(4), 1125–1133 (2005)

    Article  MATH  Google Scholar 

  14. Lu, J.G., Chen, G.: A note on the fractional-order Chen system. Chaos Solitons Fractals 27(3), 685–688 (2006)

    Article  MATH  Google Scholar 

  15. Luchko, Y., Gorneflo, R.: The initial value problem for some fractional differential equations with the Caputo derivative. Preprint series A08-98, Fachbereich Mathematik und Informatik. Freie Universitat Berlin, Berlin (1998)

    Google Scholar 

  16. Magin, R.L.: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32, 1–104 (2004)

    Article  Google Scholar 

  17. Mainardi, F.: On the initial value problem for the fractional diffusion-wave equation. In: Rionero, S., Ruggeri, T. (eds.) Waves and Stability in Continuous Media (Bologna 1993). World Scientific Publishing Company, Singapore (1994)

    Google Scholar 

  18. Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien (1997)

    Google Scholar 

  19. Matsuzaki, T., Nakagawa, M.: A chaos neuron model with fractional differential equation. J. Phys. Soc. Jpn. 72, 2678–2684 (2003)

    Article  Google Scholar 

  20. Metzler, F., Schick, W., Kilian, H.G., Nonnenmacher, T.F.: Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys. 103, 7180–7186 (1995)

    Article  Google Scholar 

  21. Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamic approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  23. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  24. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  25. Rossikhin, Y., Shitikova, M.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50, 15–67 (1997)

    Article  Google Scholar 

  26. Samko, G., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993)

    MATH  Google Scholar 

  27. Tang, B.-Q., Li, X.-F.: A new method for determining the solution of Riccati differential equations. Appl. Math. Comput. 194, 431–440 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, F., Liu, Z.-H., Wang, P.: Analysis of a System for Linear Fractional Differential Equations. J. Appl. Math. (2012). doi:10.1155/2012/193061

  29. Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Didgar.

Additional information

Communicated by Mohsen Didgar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didgar, M., Ahmadi, N. An Efficient Method for Solving Systems of Linear Ordinary and Fractional Differential Equations. Bull. Malays. Math. Sci. Soc. 38, 1723–1740 (2015). https://doi.org/10.1007/s40840-014-0060-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-014-0060-6

Keywords

Mathematics Subject Classification

Navigation