Skip to main content
Log in

Darunavir: A Review in Pediatric HIV-1 Infection

  • Adis Drug Evaluation
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Darunavir (Prezista®), administered in combination with ritonavir and background antiretroviral therapy, is approved in the USA and the EU for the treatment of HIV-1 infection in pediatric patients aged ≥3 years. Ritonavir-boosted darunavir provided effective virologic suppression in treatment-naïve adolescents with HIV-1 infection, according to the results of the noncomparative, phase II DIONE trial. Ritonavir-boosted darunavir also had sustained efficacy in treatment-experienced children and/or adolescents with HIV-1 infection, according to the results of the noncomparative, phase II DELPHI and ARIEL trials. Ritonavir-boosted darunavir was generally well tolerated in pediatric patients with HIV-1 infection. Although more data are needed in pediatric populations (particularly data comparing darunavir with other antiretroviral agents), ritonavir-boosted darunavir is an important option for the treatment of pediatric patients with HIV-1 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dobroszycki J, Abadi J, Wiznia AA, et al. Profile of darunavir in the treatment of HIV-infected pediatric and adolescent patients. Adolesc Health Med Ther. 2011;2:85–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. European Medicines Agency. Prezista (darunavir): EU summary of product characteristics. 2014. http://www.ema.europa.eu. Accessed 30 July 2015.

  3. Janssen Pharmaceuticals Inc. Prezista (darunavir): US prescribing information. 2015. http://www.prezista.com. Accessed 30 July 2015.

  4. Deeks ED. Darunavir: a review of its use in the management of HIV-1 infection. Drugs. 2014;74(1):99–125.

    Article  CAS  PubMed  Google Scholar 

  5. Flynn P, Komar S, Blanche S, et al. Efficacy and safety of darunavir/ritonavir at 48 weeks in treatment-naive, HIV-1-infected adolescents: results from a phase 2 open-label trial (DIONE). Pediatr Infect Dis J. 2014;33(9):940–5.

    Article  PubMed  Google Scholar 

  6. Blanche S, Bologna R, Cahn P, et al. Pharmacokinetics, safety and efficacy of darunavir/ritonavir in treatment-experienced children and adolescents. AIDS. 2009;23(15):2005–13.

    Article  CAS  PubMed  Google Scholar 

  7. Violari A, Bologna R, Kumarasamy N, et al. Safety and efficacy of darunavir/ritonavir in treatment-experienced pediatric patients: week 48 results of the ARIEL trial. Pediatr Infect Dis J. 2015;34(5):e132–7.

    Article  PubMed  Google Scholar 

  8. Koh Y, Matsumi S, Das D, et al. Potent inhibition of HIV-1 replication by novel non-peptidyl small molecule inhibitors of protease dimerization. J Biol Chem. 2007;282(39):28709–20.

    Article  CAS  PubMed  Google Scholar 

  9. King NM, Prabu-Jeyabalan M, Nalivaika EA, et al. Structural and thermodynamic basis for the binding of TMC114, a next-generation human immunodeficiency virus type 1 protease inhibitor. J Virol. 2004;78(21):12012–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Nivesanond K, Peeters A, Lamoen D, et al. Conformational analysis of TMC114, a novel HIV-1 protease inhibitor. J Chem Inf Model. 2008;48(1):99–108.

    Article  CAS  PubMed  Google Scholar 

  11. Dierynck I, De Wit M, Gustin E, et al. Binding kinetics of darunavir to human immunodeficiency virus type 1 protease explain the potent antiviral activity and high genetic barrier. J Virol. 2007;81(24):13845–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Koh Y, Aoki M, Danish ML, et al. Loss of protease dimerization inhibition activity of darunavir is associated with the acquisition of resistance to darunavir by HIV-1. J Virol. 2011;85(19):10079–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. De Meyer S, Azijn H, Surleraux D, et al. TMC114, a novel human immunodeficiency virus type 1 protease inhibitor active against protease inhibitor-resistant viruses, including a broad range of clinical isolates. Antimicrob Agents Chemother. 2005;49(6):2314–21.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Koh Y, Nakata H, Maeda K, et al. Novel bis-tetrahydrofuranylurethane-containing nonpeptidic protease inhibitor (PI) UIC-94017 (TMC114) with potent activity against multi-PI-resistant human immunodeficiency virus in vitro. Antimicrob Agents Chemother. 2003;47(10):3123–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Dierynck I, De Meyer S, Lathouwers E, et al. In vitro susceptibility and virological outcome to darunavir and lopinavir are independent of HIV type-1 subtype in treatment-naive patients. Antivir Ther. 2010;15(8):1161–9.

    Article  CAS  PubMed  Google Scholar 

  16. de Meyer S, Vangeneugden T, van Baelen B, et al. Resistance profile of darunavir: combined 24-week results from the POWER trials. AIDS Res Hum Retroviruses. 2008;24(3):379–88.

    Article  PubMed  Google Scholar 

  17. De Meyer S, Dierynck I, Lathouwers E, et al. Phenotypic and genotypic determinants of resistance to darunavir: analysis of data from treatment-experienced patients in POWER 1, 2, 3 and DUET-1 and 2 [abstract no. 31]. Antivir Ther. 2008;13(Suppl 3):A33.

    Google Scholar 

  18. De Meyer S, Lathouwers E, Dierynck I, et al. Characterization of virologic failure patients on darunavir/ritonavir in treatment-experienced patients. AIDS. 2009;23(14):1829–40.

    Article  PubMed  Google Scholar 

  19. Lathouwers E, De La Rosa G, Van de Casteele T, et al. Virological analysis of once-daily and twice-daily darunavir/ritonavir in the ODIN trial of treatment-experienced patients. Antivir Ther. 2013;18(3):289–300.

    Article  CAS  PubMed  Google Scholar 

  20. Lathouwers E, De Meyer S, Dierynck I, et al. Virological characterization of patients failing darunavir/ritonavir or lopinavir/ritonavir treatment in the ARTEMIS study: 96-week analysis. Antivir Ther. 2011;16(1):99–108.

    Article  CAS  PubMed  Google Scholar 

  21. Donegan KL, Walker AS, Dunn D, et al. The prevalence of darunavir-associated mutations in HIV-1-infected children in the UK. Antivir Ther. 2012;17(4):599–603.

    Article  CAS  PubMed  Google Scholar 

  22. Brochot A, Vis P, Van De Casteele T, et al. Model based dosing rationale for darunavir when co-administered with low-dose ritonavir in pediatric HIV-1 infected patients [abstract no. T-040 ]. J Pharmacokinet Pharmacodyn. 2013;40(1 Suppl):S89–S90.

  23. Kakuda TN, Brochot A, van de Casteele T, et al. Establishing darunavir dosing recommendations in treatment-naive and treatment-experienced pediatric patients [abstract no. O_13]. In: 14th International Workshop on Clinical Pharmacology of HIV Therapy. 2013.

  24. Kakuda TN, Sekar V, Lavreys L, et al. Pharmacokinetics of darunavir after administration of an oral suspension with low-dose ritonavir and with or without food. CPDD. 2014;3(5):346–52.

    Article  CAS  Google Scholar 

  25. European Medicines Agency. Assessment report for Prezista (darunavir). Procedure no. EMEA/H/C/000707/X/0041/G. 2012. http://www.ema.europa.eu. Accessed 30 July 2015.

  26. Schwarze-Zander C, Klingmüller D, Klümper J, et al. Triamcinolone and ritonavir leading to drug-induced Cushing syndrome and adrenal suppression: description of a new case and review of the literature. Infection. 2013;41(6):1183–7.

    Article  CAS  PubMed  Google Scholar 

  27. Larson KB, Cressey TR, Yogev R, et al. Pharmacokinetics of once-daily darunavir/ritonavir with and without etravirine in human immunodeficiency virus-infected children, adolescents, and young adults. J Pediatric Infect Dis Soc. 2015. doi:10.1093/jpids/piu142.

    Google Scholar 

  28. Rakhmanina NY, Neely MN, Capparelli EV. High dose of darunavir in treatment-experienced HIV-infected adolescent results in virologic suppression and improved CD4 cell count. Ther Drug Monit. 2012;34(3):237–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Bamford A, Turkova A, Lyall H, et al. Paediatric European Network for Treatment of AIDS (PENTA) guidelines for treatment of paediatric HIV-1 infection 2015: optimizing health in preparation for adult life. HIV Med. 2015. doi:10.1111/hiv.12217.

    PubMed  Google Scholar 

  30. Panel on Antiretroviral Therapy and Medical Management of HIV-Infected Children. Guidelines for the use of antiretroviral agents in pediatric HIV infection. 2015. http://aidsinfo.nih.gov/contentfiles/lvguidelines/PediatricGuidelines.pdf. Accessed 30 July 2015.

  31. World Health Organization. Antiretroviral therapy for HIV infection in infants and children: towards universal access. 2010. http://whqlibdoc.who.int/publications/2010/9789241599801_eng.pdf?ua=1. Accessed 30 July 2015.

  32. Ananworanich J, Puthanakit T, Saphonn V, et al. Lessons from a multicentre paediatric HIV trial. Lancet. 2008;372(9636):356–7.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents: Department of Health and Human Services. 2015. http://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-arv-guidelines/0. Accessed 30 July 2015.

  34. Gilead Sciences Inc. Truvada® (emtricitabine/tenofovir disoproxil fumarate): US prescribing information. 2015. http://www.gilead.com. Accessed 30 July 2015.

  35. European Medicines Agency. Truvada (tenofovir disoproxil fumarate/emtricitabine): EU summary of product characteristics. 2015. http://www.ema.europa.eu. Accessed 30 July 2015.

  36. European Medicines Agency. Viread (tenofovir disoproxil fumarate): EU summary of product characteristics. 2015. http://www.ema.europa.eu. Accessed 30 July 2015.

  37. European Medicines Agency. Emtriva (emtricitabine): EU summary of product characteristics. 2015. http://www.ema.europa.eu/. Accessed 30 July 2015.

  38. Overton ET, Arathoon E, Baraldi E, et al. Effect of darunavir on lipid profile in HIV-infected patients. HIV Clin Trials. 2012;13(5):256–70.

    Article  CAS  PubMed  Google Scholar 

  39. Xiang N, James M, Walters S, et al. Improved serum cholesterol in paediatric patients switched from suppressive lopinavir-based therapy to boosted darunavir or atazanavir: an 18-month retrospective study. HIV Med. 2014;15(10):635–6.

    Article  CAS  PubMed  Google Scholar 

  40. Buijs BS, van den Berk GE, Boateng CP, et al. Cross-reactivity between darunavir and trimethoprim-sulfamethoxazole in HIV-infected patients. AIDS. 2015;29(7):785–91.

    Article  CAS  PubMed  Google Scholar 

  41. Rosso R, Bernardini C, Bruzzone B, et al. Efficacy and safety of darunavir and etravirine in an antiretroviral multi-experienced youth with vertically HIV-1 infection. Eur J Med Res. 2009;14(3):136–8.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Thuret I, Chaix M-L, Tamalet C, et al. Raltegravir, etravirine and r-darunavir combination in adolescents with multidrug-resistant virus. AIDS. 2009;23(17):2364–6.

    Article  CAS  PubMed  Google Scholar 

  43. Lin D, Seabrook JA, Matsui DM, et al. Palatability, adherence and prescribing patterns of antiretroviral drugs for children with human immunodeficiency virus infection in Canada. Pharmacoepidemiol Drug Saf. 2011;20(12):1246–52.

    Article  PubMed  Google Scholar 

  44. Kirk BL, Gomila A, Matshaba M, et al. Early outcomes of darunavir- and/or raltegravir-based antiretroviral therapy in children with multidrug-resistant HIV at a pediatric center in Botswana. J Int Assoc Provid AIDS Care. 2013;12(2):90–4.

    Article  PubMed  Google Scholar 

  45. Kindra G, Sipambo N, Moultrie H, et al. Outcomes in treatment with darunavir/ritonavir in ART-experienced paediatric patients [letter]. S Afr Med J. 2015;105(5):330–1.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

During the peer review process, the manufacturer of darunavir was also offered an opportunity to review this article. Changes resulting from comments received were made on the basis of scientific and editorial merit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian M. Keating.

Ethics declarations

Funding

The preparation of this review was not supported by any external funding.

Conflict of interest

Gillian Keating is a salaried employee of Adis/Springer, is responsible for the article content and declares no relevant conflicts of interest.

Additional information

The manuscript was reviewed by: S. Blanche, Department of Pediatric Immuno-Hematology, Hôpital Necker-Enfants-Malades, Paris Descartes University, Paris, France; K. M. Butler, Department of Infectious Diseases and Immunology, Our Lady’s Children’s Hospital Crumlin & University College Dublin, Dublin, Ireland; B. S. Eley, Pediatric Infectious Diseases Unit, Red Cross Children’s Hospital, School of Child and Adolescent Health, University of Cape Town, Rondebosch, South Africa; V. Giacomet, Pediatric Infectious Diseases Unit, L. Sacco Hospital, University of Milan, Milan, Italy; P. Nannini, Pediatric Infectious Diseases Unit, L. Sacco Hospital, Milan, Italy; A. Noguera-Julian, Infectious Disease Unit, Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keating, G.M. Darunavir: A Review in Pediatric HIV-1 Infection. Pediatr Drugs 17, 411–421 (2015). https://doi.org/10.1007/s40272-015-0146-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-015-0146-0

Keywords

Navigation