Skip to main content
Log in

A Critical Review of the Current Evidence for Measuring Drug Concentrations of First-Line Agents Used to Treat Tuberculosis in Children

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Tuberculosis is a leading cause of infectious disease-related morbidity and mortality worldwide. Additionally, treatment is complex with most patients requiring combination therapy of first-line agents for multiple months. Children are especially at risk from the medications used to treat tuberculosis and therefore interventions to optimize both efficacy and safety are needed. Protocols exist for therapeutic drug monitoring in tuberculosis patients yet there is a gap in knowledge regarding the extent of any benefits achieved, especially in children. This review aims to summarize and evaluate literature reporting outcomes related to the measurement of drug concentrations of first-line agents used to treat tuberculosis (rifampin, isoniazid, pyrazinamide, ethambutol) in children. Findings showed a lack of strong evidence to support therapeutic drug monitoring in children with tuberculosis. Standard weight-based dosing of first-line agents does not commonly achieve target concentrations yet the effect on clinical outcomes remains unclear. As such, therapeutic drug monitoring should not be recommended currently as a widespread practice for all children with tuberculosis. However, future research should assess any benefit in special populations such as those with relapsing or recurrent disease, or those presenting with adverse drug reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO. Tuberculosis fact sheet. World Health Organization. 2015. Available from: http://www.who.int/mediacentre/factsheets/fs104/en/. Accessed 18 Mar 2015.

  2. Seddon JA, Shingadia D. Epidemiology and disease burden of tuberculosis in children: a global perspective. Infect Drug Resist. 2014;7:153–65.

    PubMed  PubMed Central  Google Scholar 

  3. Nelson LJ, Wells CD. Global epidemiology of childhood tuberculosis. Int J Lung Dis. 2004;8:636–47.

    CAS  Google Scholar 

  4. WHO. Guidance for national tuberculosis programmes on the management of tuberculosis in children. 2006. Available from: http://www.who.int/maternal_child_adolescent/documents/htm_tb_2006_371/en/. Accessed 18 Mar 2015.

  5. Marais BJ, Gie RP, Schaaf HS, Hesseling AC, Obihara CC, Nelson LJ, et al. The clinical epidemiology of childhood pulmonary tuberculosis: a critical review of literature from the pre-chemotherapy era. Int J Tuberc Lung Dis. 2004;8:278–85.

    PubMed  CAS  Google Scholar 

  6. Munro SA, Lewin SA, Smith HJ, Engel ME, Fretheim A, Volmink J. Patient adherence to tuberculosis treatment: a systematic review of qualitative research. PLOS Med. 2007;4:e238. doi:10.1371/journal.pmed.0040238.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Johnson TN. The development of drug metabolising enzymes and their influence on the susceptibility to adverse drug reactions in children. Toxicol. 2003;192:37–48.

    Article  CAS  Google Scholar 

  8. Kang J, Lee M. Overview of therapeutic drug monitoring. Korean J Intern Med. 2009;24(1):1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002;62(15):2169–83.

    Article  PubMed  CAS  Google Scholar 

  10. Begg EJ, Barclay ML, Kirkpatrick CJM. The therapeutic monitoring of antimicrobial agents. Br J Clin Pharmacol. 1999;47:23–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Touw DJ, Neef C, Thomson AH, Vinks AA. Cost-effectiveness of therapeutic drug monitoring: a systematic review. Ther Drug Monit. 2005;27:10–7.

    Article  PubMed  CAS  Google Scholar 

  12. Wilby KJ, Ensom MHH, Marra F. Review of evidence for measuring drug concentrations of first-line antitubercular agents in adults. Clin Pharmacokinet. 2014;53:873–90.

    Article  PubMed  CAS  Google Scholar 

  13. Ramachandran G, Hemanth Kumar AK, Bhavani PK, Kannan T, Ramesh Kumar S, Poorana Gangadevi N, et al. Pharmacokinetics of first-line antituberculosis drugs in HIV-infected children with tuberculosis treated with intermittent regimens in India. Antimicrob Agents Chemother. 2015;59:1162–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Ramachandran G, Hemanth Kumar AK, Bhavani PK, Sekar L, Vijayasekaran D, Banu Rekha VV, et al. Age, nutritional status and INH acetylator status affect pharmacokinetics of anti-tuberculosis drugs in children. Int J Tuberc Lung Dis. 2013;17:800–6.

    Article  PubMed  CAS  Google Scholar 

  15. Schaaf HS, Willemse M, Cilliers K, Labadarios D, Maritz JS, Hussey GD, et al. Rifampin pharmacokinetics in children, with and without human immunodeficiency virus infection, hospitalized for the management of severe forms of tuberculosis. BMC Med. 2009;7:19. doi:10.1186/1741-7015-7-19.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Roy V, Tekur U, Chopra K. Pharmacokinetics of isoniazid in pulmonary tuberculosis: a comparative study at two dose levels. Indian Pediatr. 1996;33:287–91.

    PubMed  CAS  Google Scholar 

  17. Zhu M, Burman WJ, Starke JR, Stambaugh JJ, Steiner P, Bulpitt AE, et al. Pharmacokinetics of ethambutol in children and adults with tuberculosis. Int J Tuberc Lung Dis. 2004;8:1360–7.

    PubMed  CAS  Google Scholar 

  18. McIlleron H, Willemse M, Werely CJ, Hussey GD, Schaaf HS, Smith PJ, Donald PR. Isoniazid plasma concentrations in a cohort of South African children with tuberculosis: implications for international pediatric dosing guidelines. Clin Infect Dis. 2009;48:1547–53.

    Article  PubMed  CAS  Google Scholar 

  19. Arya DS, Ojha SK, Semwal OP, Nandave M. Pharmacokinetics of pyrazinamide in children with primary progressive disease of lungs. Indian J Med Res. 2008;128:611–5.

    PubMed  CAS  Google Scholar 

  20. McIlleron H, Willemse M, Schaaf HS, Smith PJ, Donald PR. Pyrazinamide plasma concentrations in young children with tuberculosis. Pediatr Inf Dis J. 2011;30:262–4.

    Article  Google Scholar 

  21. Thee S, Detjen A, Quarcoo D, Wahn U, Magdorf K. Ethambutol in paediatric tuberculosis: aspects of ethambutol serum concentration, efficacy and toxicity in children. Int J Tuberc Lung Dis. 2007;11:965–71.

    PubMed  CAS  Google Scholar 

  22. Thee S, Seddon JA, Donald PR, Seifart HI, Werely CJ, Hesseling AC, et al. Pharmacokinetics of isoniazid, rifampin, and pyrazinamide in children younger than two years of age with tuberculosis: evidence for implementation of revised World Health Organization recommendations. Antimicrob Agents Chemother. 2011;55:5560–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Verhagen LM, Lopez D, Hermans WM, Warris A, de Groot R, Garcia JF, et al. Pharmacokinetics of anti-tuberculosis drugs in Venezuelan children younger than 16 years of age: supportive evidence for the implementation of revised WHO dosing recommendations. Trop Med Int Health. 2012;17:1449–56.

    Article  PubMed  CAS  Google Scholar 

  24. Notterman DA, Nardi M, Saslow JG. Effect of dose formulation on isoniazid absorption in two young children. Pediatrics. 1986;77:850–2.

    PubMed  CAS  Google Scholar 

  25. Schaaf HS, Parkin DP, Seifart HI, Werely CJ, Hesseling PB, van Helden PD, et al. Isoniazid pharmacokinetics in children treated for respiratory tuberculosis. Arch Dis Child. 2005;90:614–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Graham SM, Bell DJ, Nyirongo S, Hartkoorn R, Ward SA, Molyneux EM. Low levels of pyrazinamide and ethambutol in children with tuberculosis and impact of age, nutritional status, and human immunodeficiency virus infection. Antimicrob Agents Chemother. 2006;50:407–13.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Roy V, Sahni P, Gupta P, Sethland GR, Khanna A. Blood levels of pyrazinamide at doses administered under the revised national tuberculosis control program. Indian Pediatr. 2012;49:721–5.

    Article  PubMed  CAS  Google Scholar 

  28. Thee S, Detjen A, Wahn U, Magdorf K. Rifampicin serum levels in childhood tuberculosis. Int J Tuberc Lung Dis. 2009;13:1106–11.

    PubMed  CAS  Google Scholar 

  29. Gupta P, Roy V, Rai Sethi G, Mishra TK. Pyrazinamide blood concentrations in children suffering from tuberculosis: a comparative study at two doses. Br J Clin Pharmacol. 2008;65:423–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Roy V, Tekur U, Chopra K. Pharmacokinetics of pyrazinamide in children suffering from pulmonary tuberculosis. Int J Lung Dis. 1999;3:133–7.

    CAS  Google Scholar 

  31. Roy V, Gupta D, Gupta P, Sethi GR, Mishra TK. Pharmacokinetics of isoniazid in moderately malnourished children with tuberculosis. Int J Lung Dis. 2010;14:374–6.

    CAS  Google Scholar 

  32. Seth V, Beotra A, Seth SD, Semwal OP, Kabra S, Jain Y, Mukhopadhya S. Serum concentrations of rifampicin and isoniazid in tuberculosis. Indian Pediatr. 1993;30:1091–8.

    PubMed  CAS  Google Scholar 

  33. Zvada SP, Denti P, Donald PR, Schaaf HS, Thee S, Seddon JA, et al. Population pharmacokinetics of rifampicin, pyrazinamide and isoniazid in children with tuberculosis: in silico evaluation of currently recommended doses. J Antimicrob Chemother. 2014;69:1339–49.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Zhu M, Starke JR, Burman WJ, Steiner P, Stambaugh JJ, Ashkin D, et al. Population pharmacokinetic modeling of pyrazinamide in children and adults with tuberculosis. Pharmacotherapy. 2002;22:686–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle John Wilby.

Ethics declarations

Funding

No funding was received for this manuscript.

Conflict of interest

Dr. Wilby, Ms. Shabana, Dr. Ensom, and Dr. Marra all report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilby, K.J., Shabana, S., Ensom, M.H.H. et al. A Critical Review of the Current Evidence for Measuring Drug Concentrations of First-Line Agents Used to Treat Tuberculosis in Children. Clin Pharmacokinet 55, 17–31 (2016). https://doi.org/10.1007/s40262-015-0303-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0303-1

Keywords

Navigation