Skip to main content

Advertisement

Log in

Stabilizing the Electrochemistry of Lithium-Selenium Battery via In situ Gelated Polymer Electrolyte: A Look from Anode

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Li metal possesses a high theoretical specific capacity, high electronic conductivity, and a low electrochemical potential, making it a promising anode material for building next-generation rechargeable metal batteries. In case conventional liquid electrolytes were used, and the anode using Li metal has been hindered by unstable(electro)chemistry at Li/electrolyte interface and the accompanied dendrite issue. Specifically, for the Li-Se batteries, the dissolution and shuttle of polyselenide intermediates lead to the deposition of poorly-conductive species on the anode, which further aggravates the chemical environment at the anode. In this work, we proposed to stabilize the Li-Se electrochemistry by constructing a gel polymer electrolyte via in situ gelations of conventional ether-based electrolytes at room temperature. The results demonstrate that the in situ gelated electrolyte helps to build electrochemically stable electrode/electrolyte interfaces and promote the efficient transfer of charge carriers across the interface. Compared with the liquid electrolytes, the gelated electrolyte shows improved chemical compatibility with the Li metal anode, which effectively alleviates the unfavorable side reactions and dendrite formation at the anode/electrolyte interface, and the polyselenide shuttle from the cathode to the anode. As a result, the Li-Se battery shows a higher Coulombic efficiency and improved cycling performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evarts E. C., Nature, 2015, 526, S93

    Article  CAS  PubMed  Google Scholar 

  2. Wu F., Yushin G., Energy Environ. Sci., 2017, 10, 435

    Article  CAS  Google Scholar 

  3. Wang H., Tang Y., Chem. Res. Chinese Universities, 2020, 36(3), 402

    Article  CAS  Google Scholar 

  4. Xu G. L., Liu J., Amine R., Chen Z., Amine K., ACS Energy Lett., 2017, 2, 605

    Article  CAS  Google Scholar 

  5. Zhang W., Yu H. C., Wu L., Liu H., Abdellahi A., Qiu B., Bai J., Orvananos B., Strobridge F. C., Zhou X., Liu Z., Ceder G., Zhu Y., Thornton K., Grey C. P., Wang F., Sci. Adv. 2018, 4, aao2608

    Article  Google Scholar 

  6. Ding J. F., Xu R., Yan C., Xiao Y., Liang Y. R., Yuan H., Huang J. Q., Chin. Chem. Lett., 2020, 31, 2339

    Article  CAS  Google Scholar 

  7. Xi X. T., Li W. H., Hou B. H., Yang Y., Gu Z. Y., Wu X. L., ACS Appl. Energy Mater., 2019, 2, 201

    Article  CAS  Google Scholar 

  8. Pu K. C., Zhang X., Qu X. L. Hu J. J., Li H. W., Gao M. X., Pan H. G., Liu Y. F., Rare Met., 2020, 39, 616

    Article  CAS  Google Scholar 

  9. Xi X. T., Feng X., Nie X. J., Hou B. H., Li W. H., Yang X., Yang A. B., Sun W. D., Wu X. L., Chem. Commun., 2019, 55, 8406

    Article  CAS  Google Scholar 

  10. Liu Y., He P., Zhou H., Adv. Energy Mater., 2018, 8, 201701602

    Google Scholar 

  11. Abouimrane A., Dambournet D., Chapman K. W., Chupas P. J., Weng W., Amine K., J. Am. Chem. Soc., 2012, 10, 4505

    Article  Google Scholar 

  12. Wang Y. H., Li X. T., Wang W. P., Yan H. J., Xin S., Guo Y. G., Sci. China Chem., 2020, 63, 1402

    Article  CAS  Google Scholar 

  13. Zheng J. M., Engelhard M. H., Mei D. H., Jiao S. H., Polzin B. J., Zhang J. G., Xu W., Nat. Energy, 2017, 2, 17012

    Article  CAS  Google Scholar 

  14. Pan H., Han K. S., Engelhard M. H., Cao R., Chen J., Zhang J. G., Mueller K. T., Shao Y., Liu J., Adv. Funct. Mater., 2018, 28, 1870275

    Article  Google Scholar 

  15. Yuan H., Liu J., Lu Y., Zhao C. Z., Cheng X. B., Nan H. X., Liu Q. B., Huang J. Q., Zhang Q., Chem. Res. Chinese Universities, 2020, 36(3), 377

    Article  CAS  Google Scholar 

  16. Chen Y., Zhang W., Zhou D., Tian H., Su D., Wang C., Stockdale D., Kang F., Li B., Wang G., ACS Nano, 2019, 13, 4731

    Article  CAS  PubMed  Google Scholar 

  17. Zhou G. M., Pei S. F., Li L., Wang D. W., Wang S. G., Huang K., Yin L. C., Li F., Cheng H. M., Adv. Mater., 2014, 26, 625

    Article  CAS  PubMed  Google Scholar 

  18. Liu J., Zhang L., Li H., Zhao P., Ren P., Shi W., Cheng P., Sci. China Chem., 2019, 62, 602

    Article  CAS  Google Scholar 

  19. Dong Y., Ben T., Chem. Res. Chinese Universities, 2019, 35(4), 654

    Article  CAS  Google Scholar 

  20. Rahul J., Islam M. M., Nanoscale, 2020, 12, 14087

    Article  Google Scholar 

  21. Yang C. P., Yin Y. X., Guo Y. G., J. Phys. Chem. Lett., 2015, 6, 256

    Article  CAS  PubMed  Google Scholar 

  22. Xin S., Chang Z., Zhang X., Guo Y. G., Natl. Sci. Rev., 2017, 4, 54

    Article  CAS  Google Scholar 

  23. Liu Y. Y., Lin D. C., Yuen P. Y., Liu K., Xie J., Dauskardt R. H., Cui Y., Adv. Mater., 2017, 29, 1605531

    Article  Google Scholar 

  24. Ye H., Xin S., Yin Y. X., Li J. Y., Guo Y. G., Wan L. J., J. Am. Chem. Soc., 2017, 139, 5916

    Article  CAS  PubMed  Google Scholar 

  25. Peng H. J., Huang J. Q., Zhang Q., Chem. Soc. Rev., 2017, 46, 5237

    Article  CAS  PubMed  Google Scholar 

  26. Goodenough J. B., Gao H. A., Sci. China Chem., 2019, 62, 1555

    Article  CAS  Google Scholar 

  27. Ma L., Kim M. S., Archer L. A., Chem. Mater., 2017, 29, 4181

    Article  CAS  Google Scholar 

  28. Hu L. B., Xu K., Proc. Natl. Acad. Sci. USA, 2014, 111, 3205

    Article  CAS  PubMed  Google Scholar 

  29. Liu F. Q., Wang W. P., Yin Y. X., Zhang S. F., Shi J. L., Wang L., Zhang X. D., Zheng Y., Zhou J. J., Li L., Guo Y. G., Sci. Adv., 2018, 4, aat5383

    Article  Google Scholar 

  30. Gao S., Wang K. L., Wang R. X., Jiang M., Han J., Gu T. T., Cheng S. J., Jiang K., J. Mater. Chem. A, 2017, 5, 17889

    Article  CAS  Google Scholar 

  31. Xu K., Chem. Rev., 2004, 104, 4303

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Q., Wang Y., She Z. W., Fu Z., Zhang R., Cui Y., Nano Lett., 2015, 15, 3780

    Article  CAS  PubMed  Google Scholar 

  33. Chai J. C., Liu Z. H., Ma J., Wang J., Liu X. C., Liu H. S., Zhang J. J., Cui G. L., Chen L. Q., Adv. Sci., 2017, 4, 1600377

    Article  Google Scholar 

  34. Liu M., Zhou D., He Y. B., Fu Y., Qin X., Miao C., Du H., Li B., Yang Q. H., Lin Z., Zhao T. S., Kang F., Nano Energy, 2016, 22, 278

    Article  CAS  Google Scholar 

  35. Ali R., Farah A., Binkhathlan Z., Saudi Pharm. J., 2017, 25, 258

    Article  PubMed  Google Scholar 

  36. Wang K., Wu Y., Liu K., Wu H., Chem. Res. Chinese Universities, 2020, 36(3), 351

    Article  CAS  Google Scholar 

  37. Cai D., Liu B., Zhu D., Chen D., Lu M., Cao J., Wang Y., Huang W., Shao Y., Tu H., Han W., Adv. Energy Mater., 2020, 10, 1904273

    Article  CAS  Google Scholar 

  38. Zhou Y., Li Z., Lu Y. C., Nano Energy, 2017, 39, 554

    Article  CAS  Google Scholar 

  39. Xu G., Kushima A., Yuan J., Dou H., Xue W., Zhang, Yan X., Li J., Energy Environ. Sci., 2017, 10, 2544

    Article  CAS  Google Scholar 

  40. Zhao Z., Qin D., Wang S., Chen G., Li Z., Electrochim. Acta, 2014, 127, 123

    Article  CAS  Google Scholar 

  41. Guo J., Yang Z., Yu Y., Abruna H. D., Archer L. A., J. Am. Chem. Soc., 2013, 135, 763

    Article  CAS  PubMed  Google Scholar 

  42. Zhang S., Ueno K., Dokko K., Watanabe M., Adv. Energy Mater., 2015, 5, 201500117

    Google Scholar 

  43. Zhang S. S., Tran D. T., Electrochimica Acta, 2013, 114, 296

    Article  CAS  Google Scholar 

  44. Yang C. P., Yin Y. X., Guo Y. G., Wan L. J., J. Am. Chem. Soc., 2015, 137, 2215

    Article  CAS  PubMed  Google Scholar 

  45. Wang L. N., Liu J. Y., Yuan S. Y., Wang Y. G., Xia Y. Y., Energy Environ. Sci., 2016, 9, 224

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China(No. 2016YFA0202500), the National Natural Science Foundation of China(Nos. 21975266, 21805062), and the Beijing National Laboratory for Molecular Sciences, China(No.BNLMS-CXXM-201906).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sen Xin or Yu-Guo Guo.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WP., Zhang, J., Li, XT. et al. Stabilizing the Electrochemistry of Lithium-Selenium Battery via In situ Gelated Polymer Electrolyte: A Look from Anode. Chem. Res. Chin. Univ. 37, 298–303 (2021). https://doi.org/10.1007/s40242-021-0448-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-0448-4

Keywords

Navigation