Skip to main content
Log in

Physics of Electrolytic Gas Evolution

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

A brief analysis of the physics and effects of electrolytic gas evolution is presented. Aspects considered include bubble nucleation, growth and detachment; enhancement of mass and heat transfer; and decrease of apparent electrical conductivity of bubble containing electrolytes. This analysis is mainly oriented to hydrogen-/oxygen-evolving electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Volmer, A. Weber, Z. Phys. Chem. 119, 277 (1926)

    Google Scholar 

  2. L. Farkas, Z. Phys. Chem. 125, 236 (1927)

    Google Scholar 

  3. R. Becker, W. Doring, Ann. Phys. 24, 719 (1935)

    Article  MATH  Google Scholar 

  4. W. Doring, Z. Phys. Chem. 36, 371 (1937)

    Google Scholar 

  5. W. Doring, Z. Phys. Chem. 38, 292 (1938)

    Google Scholar 

  6. Ya.B. Zeldovich, Acta Physicochim. USSR 18, 1 (1943)

    Google Scholar 

  7. Y. Kagan, Russ. J. Phys. Chem. 34, 42 (1960)

    Google Scholar 

  8. J. Frenkel, Kinetic theory of liquids (Dover, New York, 1955)

    Google Scholar 

  9. M. Blander, J.L. Katz, AICHE J. 21, 833 (1975)

    Article  Google Scholar 

  10. C.A. Ward, A. Balakrishnan, F.C. Hooper, Trans. ASME 92, 695 (1970)

    Google Scholar 

  11. A.S. Tucker, C.A. Ward, J. Appl. Phys. 46, 4801 (1975)

    Article  ADS  Google Scholar 

  12. K. Dapkus, P. Sides, J. Coll. Interface Sci. 111, 133 (1986)

    Article  Google Scholar 

  13. H.B. Clark, P.S. Strenge, J.W. Westwater, Chem. Eng. Prog. Symp. Ser. 29(55), 103 (1957)

    Google Scholar 

  14. R. Cole, Adv. Heat Transfer 10, 85 (1974)

    Article  Google Scholar 

  15. D.E. Westerheide, J.W. Westwater, Am. Inst. Chem. Eng. J. 7, 357 (1961)

    Article  Google Scholar 

  16. L.J.J. Janssen, J.H. Hoogland, Electrochim. Acta 15, 1013 (1970)

    Article  Google Scholar 

  17. H. Vogt, Electrochim. Acta 25, 527 (1980)

    Article  Google Scholar 

  18. S. Lubtekin, Electrochim. Acta 48, 357 (2002)

    Article  Google Scholar 

  19. J. Eigeldinger, H. Vogt, Electrochim. Acta 45, 4449 (2000)

    Article  Google Scholar 

  20. A. Volanschi, W. Olthuis, P. Bergveld, Sensor Actuat A-Phys 52, 18 (1996)

    Article  Google Scholar 

  21. H. Vogt, R.J. Balzer, Electrochim. Acta 50, 2073 (2005)

    Article  Google Scholar 

  22. H. Vogt, O. Aras, R.J. Balzer, Int. J. Heat Mass Transfer 47, 787 (2004)

    Article  Google Scholar 

  23. L.E. Scriven, Chem. Eng. Sci. 27, 1753 (1959)

    Google Scholar 

  24. H.Y. Cheh, Ph.D. thesis, University of California (1967)

  25. M.S. Plesset, S.A. Zwick, J. Appl. Phys. 25, 493 (1954)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. J.P. Glas, J.W. Westwater, Int. J. Heat Mass Transfer 7, 1427 (1964)

    Article  Google Scholar 

  27. L.J.J. Janssen, S. van Stralen, Electrochim. Acta 26, 1011 (1981)

    Article  Google Scholar 

  28. R. Putt, M.Sc. thesis, University of California (1975)

  29. P.J. Sides, Ph.D. thesis, University of California (1981)

  30. P.J. Sides, C.W. Tobias, J. Electrochem. Soc. 132, 583 (1985)

    Article  Google Scholar 

  31. S. Fortin, M. Gerhardt, A. Gesing, Light Met, March, 721 (1983)

  32. B. Kabanov, A. Frumkin, Z. Phys. Chem. 165A, 433 (1933)

    Google Scholar 

  33. C. Browne, R.F. Tabor, D.Y.C. Chan, R.R. Dagostine, M. Ashokkumar, F. Grieser, Langmuir 27, 12025 (2011)

    Article  Google Scholar 

  34. S. Samanta, P. Ghosh, Ind. Eng. Chem. Res. 50, 4484 (2011)

    Article  Google Scholar 

  35. B.V. Boshenyatov, Dokl. Akad. Nauk. 427, 321 (2009)

    Google Scholar 

  36. E. Dussan, R. Chow, J. Fluid Mech. 137, 1 (1983)

    Article  ADS  MATH  Google Scholar 

  37. E. Dussan, J. Fluid Mech. 151, 1 (1985)

    Article  ADS  MATH  Google Scholar 

  38. J. Venczel, Electrochim. Acta 15, 1909 (1970)

    Article  Google Scholar 

  39. N. Ibl, J. Venczel, Metalloberflache 24, 365 (1970)

    Google Scholar 

  40. L.J.J. Janssen, J. Hoogland, Electrochim. Acta 18, 543 (1973)

    Article  Google Scholar 

  41. N. Ibl, Chimie. Ing. Tech. 43, 202 (1971)

    Article  Google Scholar 

  42. D. Landolt, R. Acosta, R. Muller, C.W. Tobias, J. Electrochem. Soc. 117, 839 (1970)

    Article  Google Scholar 

  43. E.L. Littauer, U. S. Patent 3, 880,721 (1975)

    Google Scholar 

  44. L.J.J. Janssen, E. Barendrecht, Electrochim. Acta 28, 341 (1983)

    Article  Google Scholar 

  45. D.A.G. Bruggeman, Ann. Phys. 24, 636 (1935)

    Article  Google Scholar 

  46. R.E. Meredith, C.W. Tobias, in Advances in electrochemistry and electrochemical engineering, vol. 2, ed. by C.W. Tobias (Interscience, New York, 1962), p. 15

    Google Scholar 

  47. J.C. Maxwell, A treatise on electricity and magnetism, vol. 1, 2nd edn. (Clarendon, Oxford, 1981), p. 435

    Google Scholar 

  48. R.E. Meredith, C.W. Tobias, J. Electrochem. Soc. 108, 286 (1961)

    Article  Google Scholar 

  49. S. Prager, Physica 29 (1963)

  50. A. Slawinski, J. Chim. Phys. 23, 710 (1926)

    Google Scholar 

  51. N.O.O. Clark, Trans. Faraday Soc. 44, 13 (1948)

    Article  Google Scholar 

  52. R.E. DeLaRue, C.W. Tobias, J. Electrochem. Soc. 106, 827 (1959)

    Article  Google Scholar 

  53. R.E. DeLaRue, M.Sc. thesis, University of California (1955)

  54. R.E. Meredith, C.W. Tobias, J. Appl. Phys. 31, 1270 (1960)

    Article  ADS  Google Scholar 

  55. R.E. Meredith, Ph.D. thesis, University of California (1959)

  56. G.H. Neale, W.K. Nader, AICHE J. 19, 112 (1973)

    Article  Google Scholar 

  57. P.J. Sides, in Modern aspects of electrochemistry, vol. 18, ed. by R.E. White, J.O.M. Bockris, B.E. Conway (Plenum, New York, 1986), pp. 303–354

    Chapter  Google Scholar 

  58. P.J. Sides, C.W. Tobias, J. Electrochem. Soc. 127, 288 (1980)

    Article  Google Scholar 

  59. P.J. Sides, C.W. Tobias, J. Electrochem. Soc. 129, 2715 (1982)

    Article  Google Scholar 

  60. O. Lanzi, R.F. Savinell, J. Electrochem. Soc. 130, 799 (1983)

    Article  Google Scholar 

  61. F. Hine, M. Yasuda, R. Nakamura, T. Noda, J. Electrochem. Soc. 122, 1185 (1975)

    Article  Google Scholar 

  62. F. Hine, K. Murakami, J. Electrochem. Soc. 127, 293 (1980)

    Article  Google Scholar 

  63. L. Sigrist, O. Dossenback, N. Ibl, J. Appl. Electrochem. 10, 223 (1980)

    Article  Google Scholar 

  64. L.J.J. Janssen, J.M.M. Geraets, E. Barendrecht, S.D.J. van Stralen, Electrochim. Acta 27, 1207 (1982)

    Article  Google Scholar 

  65. V.L. Kubasov, G.I. Volkov, Sov. Electrochem. 2, 665 (1966)

    Google Scholar 

  66. K. Takata, H. Morishita, Denki Kagaku 32, 378 (1964)

    Google Scholar 

  67. F. Hine, M. Yoshizawa, S. Okada, Denki Kagaku 24, 370 (1956)

    Google Scholar 

  68. C.W. Tobias, J. Electrochem. Soc. 106, 833 (1959)

    Article  Google Scholar 

  69. V.K. Jain, Advanced machining processes (Allied, New Delhi, 2002)

    Google Scholar 

  70. M. Chikhi, M. Rakib, P. Viers, S. Laborie, A. Hita, G. Durand, Desalination 149, 375 (2002)

    Article  Google Scholar 

  71. M.M. Saleh, J.W. Weidner, B.G. Ateya, J. Electrochem. Soc. 142, 4113 (1995)

    Article  Google Scholar 

  72. B. Roald, W. Beck, J. Electrochem. Soc. 98, 277 (1951)

    Article  Google Scholar 

  73. J. Venczel, Ph.D. thesis, ETH Zurich Nr. 3019 (1961)

  74. L.J.J. Janssen, Electrochim. Acta 23, 81 (1978)

    Article  Google Scholar 

  75. L.J.J. Janssen, E. Barendrecht, Electrochim. Acta 24, 693 (1979)

    Article  Google Scholar 

  76. K. Stephan, H. Vogt, Electrochim. Acta 24, 11 (1979)

    Article  Google Scholar 

  77. N. Ibl, R. Kind, E. Adam, Ann. Chim. 71, 1008 (1975)

    Google Scholar 

  78. L.J.J. Janssen, Electrochim. Acta 34, 161 (1989)

    Article  Google Scholar 

  79. H. Vogt, J. Appl. Electrochem. 19, 713 (1989)

    Article  Google Scholar 

  80. M. El-Amin (ed.), Advanced topics in mass transfer (InTech Europe, Rijeka, 2011)

    Google Scholar 

  81. R. Wetind, Ph.D. thesis, Royal Institute of Technology, Stockholm (2001)

  82. G.H. Sedahmed, A.M. Ahmed, Can. J. Chem. Eng. 67, 942 (1989)

    Article  Google Scholar 

  83. K. Klunder, F.A. Hekman, K.L. Brown, G.F. Peaslee, Electrochemistry 80, 574 (2012)

    Article  Google Scholar 

  84. M. Hammoudi, C. Henao, K. Agbossou, Y. Dubé, M.L. Doumbia, Int. J. Hydrog. Energy 37, 13895 (2012)

    Article  Google Scholar 

  85. P. Mandin, H. Roustan, J. Hamburger, R. Würthrich, G. Picard, CHISA 2006, 17th Int. Congress Chem. Proc. Engr. (2006)

  86. R. Wüthrich, G. Comninellis, H. Bleuler, Electrochim. Acta 50, 5242 (2005)

    Article  Google Scholar 

  87. C.L. Fan, D.L. Piron, H.J. Miao, M. Rojas, J. Appl. Electrochem. 23, 985 (1993)

    Article  Google Scholar 

  88. L.J.J. Janssen, J. Appl. Electrochem. 17, 1177 (1987)

    Article  Google Scholar 

  89. A.A. Dahlkild, J. Fluid Mech. 428, 249 (2001)

    Article  ADS  MATH  Google Scholar 

  90. M. Rojas, C.L. Fan, H.J. Miao, D.L. Piron, J. Appl. Electrochem. 22, 1135 (1992)

    Article  Google Scholar 

  91. R.D.S. Cavalcanti, S.R. de Farias Neto, E.O. Vilar, Braz. Arch. Biol. Technol. 48, 219 (2005)

    Article  Google Scholar 

  92. M. Kuhn, G. Kreysa, J. Appl. Electrochem. 19, 720 (1989)

    Article  Google Scholar 

  93. H. Vogt, Electrochim. Acta 78, 183 (2012)

    Article  Google Scholar 

  94. S. Yang, P. Tsai, E.S. Kooij, A. Prosperetti, H.J.W. Zandvliet, D. Lohse, Langmuir 25, 1466 (2009)

    Article  Google Scholar 

  95. J.R.T. Seddon, D. Lohse, J. Phys. Condens. Matter 23, 133001 (2011)

    Article  ADS  Google Scholar 

  96. L. Zhang, B. Zhao, L. Xue, Z. Guo, Y. Dong, H. Fang, R. Taia, J. Hu, J. Synchrotron Rad. 20 (2013)

  97. J.H. Weijs, D. Lohse, Phys. Rev. Lett. 110, 054501 (2013)

    Article  ADS  Google Scholar 

  98. W.K. Epling, J. Gelb, S. Lilster, Adv. Funct. Mat. 22, 555 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

FCT, the Portuguese Foundation for Science and Technology, is gratefully acknowledged for funding project Functional Materials for Electrolytic Hydrogen Production (PTDC/SEN-ENR/121265/2010). L. Amaral thanks FCT for a research grant within this project. D.M.F. Santos and B. Šljukić would also like to thank FCT for postdoctoral research grants SFRH/BPD/63226/2009 and SFRH/BPD/77768/2011, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. C. Sequeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sequeira, C.A.C., Santos, D.M.F., Šljukić, B. et al. Physics of Electrolytic Gas Evolution. Braz J Phys 43, 199–208 (2013). https://doi.org/10.1007/s13538-013-0131-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-013-0131-4

Keywords

Navigation