Skip to main content
Log in

Mass transfer at gas-evolving vertical electrodes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Various models have been proposed to describe the mass transfer of indicator ions to gas-evolving electrodes. For verification of the proposed models, the dependence of the mass transfer coefficient of indicator ions,k j, on the length,L e, of a gas-evolving electrode may be very useful. Experimental relations betweenk j andL e have been determined for oxygen-evolving as well as hydrogen-evolving vertical electrodes in a supporting electrolyte of 1 M KOH. Moreover, a modified hydrodynamic model, where a laminar solution flow is induced by rising bubbles, has been proposed in order to calculatek j. It has been found that this model is not useful for both types of gas-evolving electrodes. The experimental results support the earlier proposed convection-penetration model for the oxygen-evolving electrode. The solution flow near a vertical electrode, induced by rising bubbles, behaves in a turbulent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A e :

electrode surface area

A 1 :

parameter defined by Equation 13

A 2 :

parameter defined by Equation 14

A 3 :

A 1/A 2

A 4 :

parameter defined by Equation 34

c :

concentration

c s :

concentration in bulk of solution

D :

diffusion coefficient

d e :

equivalent diameter of cell compartment at the level of the working electrode

F :

Faraday constant

F B :

buoyant force

F S :

shear force

g :

acceleration due to gravity

i :

current density

k j :

mass transfer coefficient of indicator ion j to an electrode

L c :

length of electrode

m :

parameter defined by Equation 13

m j :

quantity of speciesj

M :

momentum flow

ΔM :

change inM

n :

parameter defined by Equation 13

p :

parameter,x 3/4

υ:

velocity of solution flow

υs :

velocity of bulk solution flow

υ1 :

υ defined by Equation 2

V B :

volume of bubbles

w :

width of a volume element

x :

coordinate, distance from leading edge of electrode

y :

coordinate, distance to the electrode

z :

coordinate, width of electrode

δ:

boundary layer thickness

δb :

bubble layer thickness at the electrode

δn :

Nernst diffusion layer thickness

ε:

gas voidage

ϱ:

density

εav :

average density of a mixture of solution and bubbles in a volume element

εs :

density of bulk solution

εg :

density of gas

μ:

viscosity

μw :

viscosity of solution-gas bubble mixture at the electrode surface

ν:

kinematic viscosity, ν=μ/ϱ

ψ:

parameter defined by Equation 26

av:

average

b:

bubble layer at the surface of electrode

B:

bubble-induced convection

e:

electrode

F:

forced convection

fi:

Fe(CN) 3−6

fo:

Fe(CN) 4−6

FB:

combined forced and bubble-induced convection

g:

gas

max:

maximum

N:

natural convection

s:

bulk of solution

w:

on the electrode surface

References

  1. H. Vogt, in ‘Comprehensive Treatise of Electrochemistry’ (edited by E. Yeager, J. O'M. Bockris, B. E. Conway and S. Sarangapani) Plenum Press, New York and London (1983) pp. 6, 445.

    Google Scholar 

  2. L. J. J. Janssen and E. Barendrecht,Electrochim. Acta 30 (1985) 683.

    Google Scholar 

  3. L. J. J. Janssen and S. J. D. van Stralen,26 (1981) 1011.

    Google Scholar 

  4. L. J. J. Janssen and E. Barendrecht,24 (1979) 693.

    Google Scholar 

  5. L. J. J. Janssen and J. G. Hoogland,18 (1973) 543.

    Google Scholar 

  6. L. J. J. Janssen and E. Barendrecht, ‘Dechema-Monographien Band 98’, Verlag Chemie (1985) p. 463.

  7. C. R. Wilke, C. W. Tobias and M. Eisenberg,Chem. Eng. Progr. 49 (1953) 663.

    Google Scholar 

  8. E. R. G. Eckert, ‘Introduction to Heat and Mass Transfer’, McGraw-Hill, New York, San Francisco, Toronto and London (1963) p. 186.

    Google Scholar 

  9. B. E. Bongenaar-Schlenter, L. J. J. Janssen, S. J. D. van Stralen and E. Barendrecht,J. Appl. Electrochem. 15 (1985) 537.

    Google Scholar 

  10. E. Gruber, ‘Polymerchemie’, UTB Steinhopff, Darmstadt (1980) p. 124.

    Google Scholar 

  11. D. J. Pickett, ‘Electrochemical Reactor Design’, Elsevier Scientific, Amsterdam, Oxford, New York (1977) p. 125.

    Google Scholar 

  12. W. H. McAdams, ‘Heat Transmission’, 2nd edn, McGraw-Hill, New York (1942) p. 217.

    Google Scholar 

  13. J. Newman, ‘Electrochemical Systems’, Prentice-Hall, Englewood Cliffs, NJ (1973).

    Google Scholar 

  14. A. Acrivos,Chem. Eng. Sci. 21 (1966) 343.

    Google Scholar 

  15. J. Jorné,J. Electrochem. Soc. 131 (1984) 2283.

    Google Scholar 

  16. E. R. G. Eckert and R. M. Drahe, ‘Heat and Mass Transfer’, McGraw-Hill, New York (1959) p. 153.

    Google Scholar 

  17. A. J. Geurts, private communication.

  18. D. J. Pickett and K. L. Ong,Electrochim. Acta 12 (1974) 875.

    Google Scholar 

  19. D. J. Pickett, ‘Electrochemical Reactor Design’, Elsevier Scientific, Amsterdam (1977) p. 139.

    Google Scholar 

  20. F. N. Ngoya,Electrochim. Acta 28 (1983) 1865.

    Google Scholar 

  21. M. G. Fouad and G. H. Sedahmed,17 (1972) 665.

    Google Scholar 

  22. S. S. Kutateladze,Int. J. Heat Mass Transfer 4 (1961) 31.

    Google Scholar 

  23. T. R. Beck,J. Electrochem. Soc. 116 (1969) 1038.

    Google Scholar 

  24. M. D. Birkett and A. Kuhn,Electrochim. Acta 22 (1977) 1427.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, L.J.J. Mass transfer at gas-evolving vertical electrodes. J Appl Electrochem 17, 1177–1189 (1987). https://doi.org/10.1007/BF01023601

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01023601

Keywords

Navigation