Skip to main content
Log in

Size effect on negative capacitance at forward bias in InGaN/GaN multiple quantum well-based blue LED

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Size effect of InGaN/GaN multiple quantum well (MQW) blue light emitting diodes (LEDs), on electrical characteristics in forward bias voltage at high injection current in light emission regime, is observed to induce a substantial dispersion in the current density and normalized negative capacitance (NC) (i.e., capacitance per chip area). The correction of normalized NC by considering the LED p-n junction series resistance has been found to be independent of chip area size with lateral dimensions ranging from 100 µm × 100 µm to 400 µm × 400 µm. This fact, confirms that the inductive effect which is usually behind the NC apparition is homogeneously and uniformly distributed across the entire device area and hence the dispersive characteristics are not related to local paths. From the characteristics of NC dependence on temperature, frequency and direct current bias, a mechanism based on the electrons/holes charge carriers conductivity difference is proposed to be responsible for the transient electron-hole pair recombination process inducing NC phenomenon. Direct measurement of light emission brightness under modulated frequency demonstrated that modulated light output evolution follows the same behavioral tendency as measured in NC under alternating current signal modulation. Thus it is concluded that the NC is valuable information which would be of practical interest in improving the characteristics and parameters relevant to LED p-n junction internal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Morkoc, Handbook of Nitride Semiconductors and Devices, Vol. 3, GaN-based Optical and Electronic Devices, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2009).

    Google Scholar 

  2. F. A. Ponce and D. P. Bour, Nature 386, 351 (1997).

    Article  Google Scholar 

  3. I. Akasaki, Proc. IEEE 101, 10, 2200 (2013).

    Article  Google Scholar 

  4. Z. Y. Fan, J. Y. Lin, and H. X. Jiang, J. Phys. D: Appl. Phys. 41, 094001 (2008).

    Article  Google Scholar 

  5. S. Lee, G. Yoo, J. Jang, Y. Won, and O. Nam, Electron. Mater. Lett. 10, 67 (2014).

    Article  Google Scholar 

  6. E.-M. Bourim, and J. I. Han, Electron. Mater. Lett. 11, 982 (2015).

    Article  Google Scholar 

  7. F. Sandoval, C. Lopez, and E. Munoz, Solid-State Electron. 25, 355 (1982).

    Article  Google Scholar 

  8. X. Wu, E. S. Yang, and H. L. Evans, J. Appl. Phys. 68, 2845 (1990).

    Article  Google Scholar 

  9. C. H. Champmess and W. R. Clark, Appl. Phys. Lett. 56, 1104 (1990).

    Article  Google Scholar 

  10. T. Noguchi, M. Kitagawa, and I. Taniguchio, Jpn. J. Appl. Phys. 19, 1423 (1980).

    Article  Google Scholar 

  11. C. Y. Zhu, L. F. Feng, C. D. Wang, H. X. Cong, G. Y. Zhang, Z. J. Yang, and Z. Z. Chen, Solid State Electron. 53, 324 (2009).

    Article  Google Scholar 

  12. L. S. C. Pingree, B. J. Scott, M. T. Russell, T. J. Marks, and M. C. Hersam, Appl. Phys. Lett. 86, 073509-1 (2005).

  13. J. Bisquert, G. Garcia-Belmonte, A. Pitarch, and H. J. Bolink, Chem. Phys. Lett. 422, 184 (2006).

    Article  Google Scholar 

  14. H. H. P. Gommans, M. Kemerink, and R. A. J. Janssen, Phys. Rev. B 72, 235204-1 (2005).

  15. I. Mora-Seró, J. Bisquert, F. Fabregat-Santiago, G. Garcia-Belmonte, G. Zoppi, K. Durose, Y. Proskuryakov, I. Oja, A. Belaidi, T. Dittrich, R. Tena-Zaera, A. Katty, C. Lévy-Clément, V. Barrioz, and S. J. C. Irvine, Nano Lett. 6, 640 (2006).

    Article  Google Scholar 

  16. F. Lemmi and N. M. Johnson, Appl. Phys. Lett. 74, 251 (1999).

    Article  Google Scholar 

  17. H. C. Liu, Z.R. Wasilewski, M. Buchanan, and H. Chu, Appl. Phys. Lett. 63, 761 (1993).

    Article  Google Scholar 

  18. M. Ershov, H. C. Liu, L. Li, M. Buchanan, Z. R. Wasilewski, and V. Ryzhii, Appl. Phys. Lett. 70, 1828 (1997).

    Article  Google Scholar 

  19. A. G. U. Perera, W. Z. Shen, and M. E. Shov, Appl. Phys. Lett. 74, 3167-9 (1999).

  20. W. Yang, D. Li, J. He, C. Wang, and X. Hu, Phys. Status Solidi C 11, 714 (2014).

    Article  Google Scholar 

  21. W. Yang, S. Zhang, J. J. D. McKendry, J. Herrnsdorf, P. Tian, Z. Gong, Q. Ji, I. M. Watson, E. Gu, M. D. Dawson, L. Feng, C. Wang, and X. Hu, J. Appl. Phys. 116, 044512 (2014).

    Article  Google Scholar 

  22. M. Ershov, H. C. Liu, L. Li, M. Buchanan, Z. R. Wasilewski, and A. K. Jonscher, IEEE Trans. Electron. Dev. 45, 2196 (1998).

    Article  Google Scholar 

  23. X. Wu, E. S. Yang, and H. L. Evans, J. Appl. Phys. 68, 2845 (1990).

    Article  Google Scholar 

  24. C. H. Champness and W. R. Clark, Appl. Phys. Lett. 56, 1104 (1990).

    Article  Google Scholar 

  25. K. Bansal and S. Datta, J. Appl. Phys. 110, 114509 (2011).

    Article  Google Scholar 

  26. K. Bansal and S. Datta, Appl. Phys. Lett. 102, 053508 (2013).

    Article  Google Scholar 

  27. K. Bansal and S. Datta, Mater. Res. Soc. Symp. Proc. 1635, 49 (2014).

    Article  Google Scholar 

  28. A. K. Jonscher, J. Chem. Soc., Faraday Trans. 2, 75 (1986).

    Article  Google Scholar 

  29. E. Ehrenfreund, C. Lungenschmied, G. Dennler, H. Neugebauer, and N. S. Sariciftci, Appl. Phys. Lett. 91, 012112 (2007).

    Article  Google Scholar 

  30. C. Y. Zhu, L. F. Feng, C. D. Wang, H. X. Cong, G. Y. Zhang, Z. J. Yang, and Z. Z. Chen, Solid-State Electron. 53, 324 (2009).

    Article  Google Scholar 

  31. L. F. Feng, J. Wang, C. Y. Zhu, H. X. Cong, Y. Chen, and C. D. Wang, Optoelectron. Lett. 1, 0124 (2005).

    Article  Google Scholar 

  32. Y. Li, C. D. Wang, L. F. Feng, C. Y. Zhu, H. X. Cong, D. Li, and G. Y. Zhang, J. Appl. Phys. 109, 124506 (2011).

    Article  Google Scholar 

  33. Y. Li, L. F. Feng, Q. Y. Xing, and X. L. Wang, J. Electr. Mater. 44, 3, 999 (2015).

    Article  Google Scholar 

  34. S. X. Jin, J. Shakya, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 78, 3532 (2001).

    Article  Google Scholar 

  35. Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, J. Appl. Phys. 107, 013103 (2010).

    Article  Google Scholar 

  36. P. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, Appl. Phys. Lett. 101, 231110 (2012).

    Article  Google Scholar 

  37. T.-I. Kim, Y. H. Jung, J. Song, D. Kim, Y. Li, H.-S. Kim, I.-S. Song, J. J. Wierer, H. A. Pao, Y. Huang, and J. A. Rogers, Small 8, 1643 (2012).

    Article  Google Scholar 

  38. J. Werner, A. F. J. Levi, R. T. Tung, M. Anzlowar, and M. Pinto, Phys. Rev. Lett. 60, 53 (1988).

    Article  Google Scholar 

  39. M. A. Green and J. Shewchun, Solid-Slate Electron. 16, 1141 (1973).

    Article  Google Scholar 

  40. Y. Zohta, Hi. Kuroda, R. Nii, and S. Nakamura, J. Cryst. Growth 189-190, 816 (1998).

    Article  Google Scholar 

  41. N. D. Nguyen, M. Schmeits, M. Germain, B. Schineller, and M. Heuken, Phys. Stat. Sol. (c) 0, 1, 288 (2002).

    Article  Google Scholar 

  42. A. Y. Polyakov, A. V. Govorkov, N. B. Smirnov, A. V. Markov, I.-H. Lee, J.-W. Ju, S. Yu. Karpov, N. M. Shmidt, and S. J. Pearton, J. Appl. Phys. 105, 123708-1 (2009).

  43. O. V. Kucherovaa, V. I. Zubkova, A. V. Solomonova, and D. V. Davydov, Semiconductors 44, 335 (2010).

    Article  Google Scholar 

  44. E. H. Nicollian and J. R. Brews, Metal Oxide Semiconductor (MOS) Physics and Technology, Wiley, N. Y. (1982).

    Google Scholar 

  45. S. M. Sze, Physics of Semiconductor Devices, 2nd ed., J. Wiley & Sons, N. Y. (1981).

    Google Scholar 

  46. S.-J. Chang and J.-G. Hwu, IEEE Tran. Electr. Dev. 58, 684 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong In Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourim, EM., Han, J.I. Size effect on negative capacitance at forward bias in InGaN/GaN multiple quantum well-based blue LED. Electron. Mater. Lett. 12, 67–75 (2016). https://doi.org/10.1007/s13391-015-5281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5281-9

Keywords

Navigation