Skip to main content
Log in

Effect of boron in single quantum well blue light-emitting diodes

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The ByInxGa1-xy N system is a good candidate for the fabrication of optoelectronic devices such as light emitting diodes and laser diodes. In this work, we present a comparative study between p-GaN/p-AlGaN/InGaN/n-GaN/GaN LED having InGaN as a single quantum well (SQW) and a second one that has BInGaN as a single quantum well, with 1% of boron, 22% of indium, and 3 nm of thickness; i.e. p-GaN/p-AlGaN/BInGaN/n-GaN/GaN. Using Silvaco TCAD simulator; we simulate and compare the electrical and optical characteristics of the LEDs. We simulate the anode current as a function of the anode voltage, the luminous power and the wall-plug efficiency as a function of the anode current, and the power spectral density as a function of the wavelength. With only 1% of boron content in the quantum well, the performances of the LED are improved by 18% in the power spectral density and 7% improvement in wall-plug efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Bourrellier, Luminescence at defects in h-BN excitons at stacking faults and single photon emitters, doctoral school 564: physics in Île-de-France, University of Paris sud, 2014

  2. Y.H. Hsiao, M.L. Tsai J.H. He, The GaN-based multiple quantum well light-emitting-diodes employing nanotechnology for photon management, 2013

  3. C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, J.S. Speck, The efficiency challenge of nitride light-emitting diodes for lighting. Phys. Status Solidi (A) 212(5), 899–913 (2015)

    Article  ADS  Google Scholar 

  4. Y. Liao, D.A. Collins, W. Zhang, Ultraviolet light emitting device doped with boron, Patent. Application Publication Apr. 7, Sheet 1 to 7, 2016

  5. L. Guenineche, A. Hamdoune, Improvement of DC and RF performances of an AlGaN/GaN HEMT by a B0.01Ga0.99N back-barrier simulation study. University of Abou-BakrBelkaid, 2015

  6. L. Williams, E. Kioupakis, BInGaN alloys nearly lattice-matched to GaN for high-power high-efficiency visible LEDs. Appl. Phys. Lett. 111(21), 211107 (2017)

    Article  ADS  Google Scholar 

  7. J. Xue, Y. Zhao, S.-H. Oh, W.F. Herrington, J.S. Speck, S.P. DenBaars, S. Nakamura, R.J. Ram, Thermally enhanced blue light-emitting diode. Appl. Phys. Lett. 107(12), 121109 (2015)

    Article  ADS  Google Scholar 

  8. R. Stevenson, The LEDs dark secret. IEEE Spectr. 46(8), 26–31 (2009)

    Article  Google Scholar 

  9. S. Nakamura, G. Fasol, The blue green diode (Springer, Berlin, 1997)

    Book  Google Scholar 

  10. J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 80(21), 3967–3969 (2002)

    Article  ADS  Google Scholar 

  11. R. Dingle, D.D. Sell, S.E. Stokowski, M. Ilegems, Absorption, reflectance, and luminescence of GaN epitaxial layers. Phys. Rev. B 4(4), 1211 (1971)

    Article  ADS  Google Scholar 

  12. J. Wu, W. Walukiewicz, Band gaps of InN and group III nitride alloys. Superlattices Microstruct. 34(1–2), 63–75 (2003)

    Article  ADS  Google Scholar 

  13. C. Williams, T.H. Glisson, J.R. Hauster, M.A. Littlejohn, Energy bandgap and lattice constant contours of iii-v quaternary alloys of the form Ax By Cz D or ABx Cy Dz. J. Electron. Mater. 7, 639–646 (1978)

    Article  ADS  Google Scholar 

  14. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur, Properties of advanced semiconductor materials GaN AlN InN, BN, SiC, SiGe (Wiley, New York, 2001), pp.67–92

    Google Scholar 

  15. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur, Properties of advanced semiconductor materials GaN AlN InN, BN, SiC, SiGe (Wiley, New York, 2001), pp.1–30

    Google Scholar 

  16. A. Ougazzaden, S. Gautier, T. Moudakir, Z. Djebbour, Z. Lochner, S. Choi, H.J. Kim, J.H. Ryou, R.D. Dupuis, and A. Sirenko, Band gap bowing in BGaN thin films. Appl. Phys. Lett. 93(8), 083118 (2008)

    Article  ADS  Google Scholar 

  17. Silvaco, Silvaco Atlas User Manual (2012)

  18. F. Bernardini, V. Fiorentini, D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56(16), R10024 (1997)

    Article  ADS  Google Scholar 

  19. K. Shimada, T. Sota, K. Suzuki, First-principles study on electronic and elastic properties of BN, AlN, and GaN. J. Appl. Phys. 84(9), 4951–4958 (1998)

    Article  ADS  Google Scholar 

  20. S. Chichibu, A. Abare, M. Minsky, S. Keller, S. Fleischer, J. Bowers, E. Hu, U. Mishra, L. Coldren, S. DenBaars, T. Sota, Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures. Appl. Phys. Lett. 73(14), 2006–2008 (1998)

    Article  ADS  Google Scholar 

  21. F. Renner, P. Kiesel, G. Döhler, M. Kneissl, C. Van de Walle, N. Johnson, Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy. Appl. Phys. Lett. 81(3), 490–492 (2002)

    Article  ADS  Google Scholar 

  22. J. Piprek, Gallium nitride materials and devices VII, in International Society for Optics and Photonics, 8262, 82620E (2012)

  23. M. Pooley, Investigating LED efficiency via multiphysics simulation. (2014)

  24. Inventor Мелвин Б. МАКЛОРИН, Boron-containing iii-nitride light-emitting device (Physics Optics), Patent RU2011140129/28A (2010)

  25. L. Williams, E. Kioupakis, BInGaN alloys nearly lattice-matched to GaN for high-power high-efficiency visible LEDs. Appl. Phys. Lett. 111(21), 211107 (2017)

    Article  ADS  Google Scholar 

  26. S.H. Park, High-efficiency BAlGaN/AlN quantum well structures for optoelectronic applications in ultraviolet spectral region. Opt. Express 23(3), 3623–3629 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badia Bouchachia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchachia, B., Hamdoune, A., Boudaoud, C. et al. Effect of boron in single quantum well blue light-emitting diodes. J Opt 52, 520–526 (2023). https://doi.org/10.1007/s12596-022-01029-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-01029-1

Keywords

Navigation