Skip to main content

Advertisement

Log in

Detection of anti-tat antibodies in CSF of individuals with HIV-associated neurocognitive disorders

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Despite major advances in the development of antiretroviral therapies, currently available treatments have no effect on the production of HIV-Tat protein once the proviral DNA is formed. Tat is a highly neurotoxic and neuroinflammatory protein, but its effects may be modulated by antibody responses against it. We developed an indirect enzyme-linked immunosorbent assay and measured anti-Tat antibody titers in CSF of a well characterized cohort of 52 HIV-infected and 13 control individuals. We successfully measured anti-Tat antibodies in CSF of HIV-infected individuals with excellent sensitivity and specificity, spanning a broad range of detection from 10,000 to over 100,000 relative light units. We analyzed them for relationship to cognitive function, CD4 cell counts, and HIV viral load. Anti-Tat antibody levels were higher in those without neurocognitive dysfunction than in those with HIV-associated neurocognitive dysfunction (HAND) and in individuals with lower CD4 cell counts and higher viral loads. We provide details of an assay which may have diagnostic, prognostic, or therapeutic implications for patients with HAND. Active viral replication may be needed to drive the immune response against Tat protein, but this robust immune response against the protein may be neuroprotective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2

Similar content being viewed by others

References

  • Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, Young SA, Mills RG, Wachsman W, Wiley CA (1992) Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42:1736–1739

    Article  PubMed  CAS  Google Scholar 

  • Dore GJ, McDonald A, Li Y, Kaldor JM, Brew BJ, National HIVSC (2003) Marked improvement in survival following AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS (London, England) 17:1539–1545

    Article  Google Scholar 

  • Gonzalez E, Rovin BH, Sen L, Cooke G, Dhanda R, Mummidi S, Kulkarni H, Bamshad MJ, Telles V, Anderson SA, Walter EA, Stephan KT, Deucher M, Mangano A, Bologna R, Ahuja SS, Dolan MJ, Ahuja SK (2002) HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci USA 99:13795–13800

    Article  PubMed  CAS  Google Scholar 

  • Haughey NJ, Nath A, Mattson MP, Slevin JT, Geiger JD (2001) HIV-1 Tat through phosphorylation of NMDA receptors potentiates glutamate excitotoxicity. J Neurochem 78:457–467

    Article  PubMed  CAS  Google Scholar 

  • Hudson L, Liu J, Nath A, Jones M, Raghavan R, Narayan O, Male D, Everall I (2000) Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues. Journal of neurovirology 6:145–155

    Article  PubMed  CAS  Google Scholar 

  • Kruman II, Nath A, Maragos WF, Chan SL, Jones M, Rangnekar VM, Jakel RJ, Mattson MP (1999) Evidence that Par-4 participates in the pathogenesis of HIV encephalitis. Am J Pathol 155:39–46

    Article  PubMed  CAS  Google Scholar 

  • Ma M, Nath A (1997) Molecular determinants for cellular uptake of Tat protein of human immunodeficiency virus type 1 in brain cells. J Virol 71:2495–2499

    PubMed  CAS  Google Scholar 

  • Mankowski JL, Clements JE, Zink MC (2002) Searching for clues: tracking the pathogenesis of human immunodeficiency virus central nervous system disease by use of an accelerated, consistent simian immunodeficiency virus macaque model. J Infect Dis 186(Suppl 2):S199–S208

    Article  PubMed  Google Scholar 

  • McArthur JC, McDermott MP, McClernon D, St Hillaire C, Conant K, Marder K, Schifitto G, Selnes OA, Sacktor N, Stern Y, Albert SM, Kieburtz K, deMarcaida JA, Cohen B, Epstein LG (2004) Attenuated central nervous system infection in advanced HIV/AIDS with combination antiretroviral therapy. Arch Neurol 61:1687–1696

    Article  PubMed  Google Scholar 

  • Neuenburg JK, Brodt HR, Herndier BG, Bickel M, Bacchetti P, Price RW, Grant RM, Schlote W (2002) HIV-related neuropathology, 1985 to 1999: rising prevalence of HIV encephalopathy in the era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr 31:171–177

    Article  PubMed  Google Scholar 

  • Prendergast MA, Rogers DT, Mulholland PJ, Littleton JM, Wilkins LH Jr, Self RL, Nath A (2002) Neurotoxic effects of the human immunodeficiency virus type-1 transcription factor Tat require function of a polyamine sensitive-site on the N-methyl-D-aspartate receptor. Brain research 954:300–307

    Article  PubMed  CAS  Google Scholar 

  • Quasney MW, Zhang Q, Sargent S, Mynatt M, Glass J, McArthur J (2001) Increased frequency of the tumor necrosis factor-alpha-308 A allele in adults with human immunodeficiency virus dementia. Ann Neurol 50:157–162

    Article  PubMed  CAS  Google Scholar 

  • Resnick L, Berger JR, Shapshak P, Tourtellotte WW (1988) Early penetration of the blood–brain-barrier by HIV. Neurology 38:9–14

    Article  PubMed  CAS  Google Scholar 

  • Rumbaugh JA, Bachani M, Li W, Butler TR, Smith KJ, Bianchet MA, Wang T, Prendergast MA, Sacktor N, Nath A (2012) HIV immune complexes prevent excitotoxicity by interaction with NMDA receptors. Neurobiol Dis 49C:169–176

    PubMed  Google Scholar 

  • Rumbaugh JA, Nath A (2006) Developments in HIV neuropathogenesis. Curr Pharm Des 12:1023–1044

    Article  PubMed  CAS  Google Scholar 

  • Sacktor N (2002) The epidemiology of human immunodeficiency virus-associated neurological disease in the era of highly active antiretroviral therapy. Journal of neurovirology 8(Suppl 2):115–121

    Article  PubMed  CAS  Google Scholar 

  • Sacktor N, Lyles RH, Skolasky R, Kleeberger C, Selnes OA, Miller EN, Becker JT, Cohen B, McArthur JC, Multicenter ACS (2001) HIV-associated neurologic disease incidence changes: Multicenter AIDS Cohort Study, 1990–1998. Neurology 56:257–260

    Article  PubMed  CAS  Google Scholar 

  • Sacktor N, McDermott MP, Marder K, Schifitto G, Selnes OA, McArthur JC, Stern Y, Albert S, Palumbo D, Kieburtz K, De Marcaida JA, Cohen B, Epstein L (2002) HIV-associated cognitive impairment before and after the advent of combination therapy. Journal of neurovirology 8:136–142

    Article  PubMed  Google Scholar 

  • Self RL, Mulholland PJ, Nath A, Harris BR, Prendergast MA (2004) The human immunodeficiency virus type-1 transcription factor Tat produces elevations in intracellular Ca2+ that require function of an N-methyl-D-aspartate receptor polyamine-sensitive site. Brain research 995:39–45

    Article  PubMed  CAS  Google Scholar 

  • Simpson DM, McArthur JC, Olney R, Clifford D, So Y, Ross D, Baird BJ, Barrett P, Hammer AE (2003) Lamotrigine for HIV-associated painful sensory neuropathies: a placebo-controlled trial. Neurology 60:1508–1514

    Article  PubMed  CAS  Google Scholar 

  • Tornatore C, Chandra R, Berger JR, Major EO (1994a) HIV-1 infection of subcortical astrocytes in the pediatric central nervous system. Neurology 44:481–487

    Article  PubMed  CAS  Google Scholar 

  • Tornatore C, Meyers K, Atwood W, Conant K, Major E (1994b) Temporal patterns of human immunodeficiency virus type 1 transcripts in human fetal astrocytes. J Virol 68:93–102

    PubMed  CAS  Google Scholar 

  • Trujillo JR, Navia BA, Worth J, Lucey DR, McLane MF, Lee TH, Essex M (1996) High levels of anti-HIV-1 envelope antibodies in cerebrospinal fluid as compared to serum from patients with AIDS dementia complex. J Acquir Immune Defic Syndr Hum Retrovirol 12:19–25

    Article  PubMed  CAS  Google Scholar 

  • Turchan J, Anderson C, Hauser KF, Sun Q, Zhang J, Liu Y, Wise PM, Kruman I, Maragos W, Mattson MP, Booze R, Nath A (2001) Estrogen protects against the synergistic toxicity by HIV proteins, methamphetamine and cocaine. BMC Neurosci 2:3

    Article  PubMed  CAS  Google Scholar 

  • Westendorp MO, Frank R, Ochsenbauer C, Stricker K, Dhein J, Walczak H, Debatin KM, Krammer PH (1995) Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375:497–500

    Article  PubMed  CAS  Google Scholar 

  • Wiley CA, Baldwin M, Achim CL (1996) Expression of HIV regulatory and structural mRNA in the central nervous system. AIDS (London, England) 10:843–847

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ms. Bachani reports no disclosures. This research was funded by NIH grants to Drs. Sacktor, McArthur, Nath, and Rumbaugh, who report no other disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rumbaugh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachani, M., Sacktor, N., McArthur, J.C. et al. Detection of anti-tat antibodies in CSF of individuals with HIV-associated neurocognitive disorders. J. Neurovirol. 19, 82–88 (2013). https://doi.org/10.1007/s13365-012-0144-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-012-0144-8

Keywords

Navigation