Skip to main content

Advertisement

Log in

Filamin A (FLNA) modulates chemosensitivity to docetaxel in triple-negative breast cancer through the MAPK/ERK pathway

  • Original Article
  • Published:
Tumor Biology

Abstract

A previous RNA interference (RNAi) screen identified filamin A (FLNA) as a potential biomarker to predict chemosensitivity in triple-negative breast cancer (TNBC). However, its ability to modulate chemosensitivity and the underlying mechanism has not been investigated. Genetic manipulation of FLNA expression has been performed in an immortalized noncancerous human mammary epithelial cell line and four TNBC cell lines to investigate its effect on chemosensitivity. Western blot analysis was performed to identify the potential signaling pathway involved. Xenograft mouse model was used to examine the in vivo role of FLNA in modulating chemosensitivity. Overexpression of FLNA conferred chemoresistance to docetaxel in noncancerous human mammary epithelial cells. Knockdown of FLNA sensitized four TNBC cell lines, MDA-MB-231, HCC38, Htb126, and HCC1937 to docetaxel which was reversed by reconstituted FLNA expression. Decreased FLNA expression correlated with decreased activation of ERK. Constitutive activation of ERK2 reversed siFLNA-induced chemosensitization. Inhibition of MEK1 recapitulates the effect of FLNA knockdown. MDA-MB-231 xenograft with FLNA knockdown showed enhanced response to docetaxel compared with control xenograft with increased apoptosis. FLNA can function as a modulator of chemosensitivity to docetaxel in TNBC cells through regulation of the MAPK/ERK pathway both in vitro and in vivo. FLNA may serve as a novel therapeutic target for improvement of chemotherapy efficacy in TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486:395–9.

    CAS  PubMed  Google Scholar 

  3. Blanchard Z, Paul BT, Craft B, ElShamy WM. BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers. Breast Cancer Res. 2015;17:5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13:2329–34.

    Article  CAS  PubMed  Google Scholar 

  5. Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need. Oncologist. 2011;16 Suppl 1:1–11.

    Article  PubMed  Google Scholar 

  6. Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res. 2008;14:1368–76.

    Article  CAS  PubMed  Google Scholar 

  7. Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, et al. Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol. 2001;2:138–45.

    Article  CAS  PubMed  Google Scholar 

  8. Savoy RM, Ghosh PM. The dual role of filamin a in cancer: can’t live with (too much of) it, can’t live without it. Endocr Relat Cancer. 2013;20:R341–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nallapalli RK, Ibrahim MX, Zhou AX, Bandaru S, Sunkara SN, Redfors B, et al. Targeting filamin A reduces K-RAS-induced lung adenocarcinomas and endothelial response to tumor growth in mice. Mol Cancer. 2012;11:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ai J, Huang H, Lv X, Tang Z, Chen M, Chen T, et al. FlNA and PGK1 are two potential markers for progression in hepatocellular carcinoma. Cell Physiol Biochem. 2011;27:207–16.

    Article  CAS  PubMed  Google Scholar 

  11. Lin JF, Xu J, Tian HY, Gao X, Chen QX, Gu Q, et al. Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Int J Cancer. 2007;121:2596–605.

    Article  CAS  PubMed  Google Scholar 

  12. Tian HM, Liu XH, Han W, Zhao LL, Yuan B, Yuan CJ. Differential expression of filamin A and its clinical significance in breast cancer. Oncol Lett. 2013;6:681–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Meng X, Yuan Y, Maestas A, Shen Z. Recovery from DNA damage-induced G2 arrest requires actin-binding protein filamin-A/actin-binding protein 280. J Biol Chem. 2004;279:6098–105.

    Article  CAS  PubMed  Google Scholar 

  14. Yue J, Wang Q, Lu H, Brenneman M, Fan F, Shen Z. The cytoskeleton protein filamin-A is required for an efficient recombinational DNA double strand break repair. Cancer Res. 2009;69:7978–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uramoto H, Akyurek LM, Hanagiri T. A positive relationship between filamin and vegf in patients with lung cancer. Anticancer Res. 2010;30:3939–44.

    PubMed  Google Scholar 

  16. Singel SM, Cornelius C, Batten K, Fasciani G, Wright WE, Lum L, et al. A targeted RNAi screen of the breast cancer genome identifies KIF14 and TLN1 as genes that modulate docetaxel chemosensitivity in triple-negative breast cancer. Clin Cancer Res. 2013;19:2061–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shay JW, Van Der Haegen BA, Ying Y, Wright WE. The frequency of immortalization of human fibroblasts and mammary epithelial cells transfected with SV40 large T-antigen. Exp Cell Res. 1993;209:45–52.

    Article  CAS  PubMed  Google Scholar 

  18. Adeyinka A, Nui Y, Cherlet T, Snell L, Watson PH, Murphy LC. Activated mitogen-activated protein kinase expression during human breast tumorigenesis and breast cancer progression. Clin Cancer Res. 2002;8:1747–53.

    CAS  PubMed  Google Scholar 

  19. Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, et al. Copper is required for oncogenic braf signalling and tumorigenesis. Nature. 2014;509:492–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Larriba MJ, Martin-Villar E, Garcia JM, Pereira F, Pena C, de Herreros AG, et al. Snail2 cooperates with snail1 in the repression of vitamin D receptor in colon cancer. Carcinogenesis. 2009;30:1459–68.

    Article  CAS  PubMed  Google Scholar 

  21. Flanagan LA, Chou J, Falet H, Neujahr R, Hartwig JH, Stossel TP. Filamin a, the arp2/3 complex, and the morphology and function of cortical actin filaments in human melanoma cells. J Cell Biol. 2001;155:511–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26:3291–310.

    Article  CAS  PubMed  Google Scholar 

  23. Craig DW, O’Shaughnessy JA, Kiefer JA, Aldrich J, Sinari S, Moses TM, et al. Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities. Mol Cancer Ther. 2013;12:104–16.

    Article  CAS  PubMed  Google Scholar 

  24. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  Google Scholar 

  25. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773:1263–84.

    Article  CAS  PubMed  Google Scholar 

  26. Marti A, Luo Z, Cunningham C, Ohta Y, Hartwig J, Stossel TP, et al. Actin-binding protein-280 binds the stress-activated protein kinase (sapk) activator SEK-1 and is required for tumor necrosis factor-alpha activation of sapk in melanoma cells. J Biol Chem. 1997;272:2620–8.

    Article  CAS  PubMed  Google Scholar 

  27. Woo MS, Ohta Y, Rabinovitz I, Stossel TP, Blenis J. Ribosomal S6 kinase (RSK) regulates phosphorylation of filamin A on an important regulatory site. Mol Cell Biol. 2004;24:3025–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scott MG, Pierotti V, Storez H, Lindberg E, Thuret A, Muntaner O, et al. Cooperative regulation of extracellular signal-regulated kinase activation and cell shape change by filamin A and beta-arrestins. Mol Cell Biol. 2006;26:3432–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaili Zhang.

Ethics declarations

Funding

This work was funded by Hebei Medical Development Funding (HMDF-KJJ).

Conflicts of interest

None

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Ma, W., Hu, Z. et al. Filamin A (FLNA) modulates chemosensitivity to docetaxel in triple-negative breast cancer through the MAPK/ERK pathway. Tumor Biol. 37, 5107–5115 (2016). https://doi.org/10.1007/s13277-015-4357-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4357-3

Keywords

Navigation