Skip to main content

Advertisement

Log in

ST8SIA1 inhibition sensitizes triple negative breast cancer to chemotherapy via suppressing Wnt/β-catenin and FAK/Akt/mTOR

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Chemoresistance is the major cause of therapeutic failure in triple negative breast cancer (TNBC). In this work, we investigated the molecular mechanism for the development of TNBC chemoresistance.

Methods

mRNA and protein levels of ST8SIA1 were analyzed in chemosensitive and chemoresistant TNBC cells and tissues. Proliferation and survival assays were performed to determine the role of ST8SIA1 in TNBC chemoresistance.

Results

We found that ST8SIA1 mRNA and protein levels were increased in multiple TNBC cell lines after prolonged exposure to chemotherapeutic drugs. Consistently, retrospective study demonstrated that the majority of TNBC patients who developed chemoresistance displayed upregulation of ST8SIA1. We further found that chemoresistant TNBC cells were more sensitive than chemosensitive cells to ST8SIA1 inhibition in decreasing growth and viability. Consistently, ST8SIA1 inhibition augmented the efficacy of chemotherapy in TNBC cells. Mechanism studies demonstrated that ST8SIA1 inhibition led to suppression of FAK/Akt/mTOR and Wnt/β-catenin signalling pathways.

Conclusions

These findings provide an explanation for the heterogeneity of chemotherapy responses across TNBC individuals and reveal the supportive roles of ST8SIA1in TNBC chemoresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dubey AK, Gupta U, Jain S. Breast cancer statistics and prediction methodology: a systematic review and analysis. Asian Pac J Cancer Prev. 2015;16(10):4237–45.

    Article  Google Scholar 

  2. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98(19):10869–74. https://doi.org/10.1073/pnas.191367098.

    Article  CAS  PubMed  Google Scholar 

  3. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15 Pt 1):4429–34. https://doi.org/10.1158/1078-0432.CCR-06-3045.

    Article  PubMed  Google Scholar 

  4. Poggio F, Bruzzone M, Ceppi M, Ponde NF, La Valle G, Del Mastro L, et al. Platinum-based neoadjuvant chemotherapy in triple-negative breast cancer: a systematic review and meta-analysis. Ann Oncol. 2018;29(7):1497–508. https://doi.org/10.1093/annonc/mdy127.

    Article  CAS  PubMed  Google Scholar 

  5. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13(11):674–90. https://doi.org/10.1038/nrclinonc.2016.66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Groux-Degroote S, Rodriguez-Walker M, Dewald JH, Daniotti JL, Delannoy P. Gangliosides in cancer cell signaling. Prog Mol Biol Transl Sci. 2018;156:197–227. https://doi.org/10.1016/bs.pmbts.2017.10.003.

    Article  CAS  PubMed  Google Scholar 

  7. Qamsari ES, Nourazarian A, Bagheri S, Motallebnezhad M. Ganglioside as a therapy target in various types of cancer. Asian Pac J Cancer Prev. 2016;17(4):1643–7. https://doi.org/10.7314/apjcp.2016.17.4.1643.

    Article  PubMed  Google Scholar 

  8. Kannagi R, Cai BH, Huang HC, Chao CC, Sakuma K. Gangliosides and tumors. Methods Mol Biol. 1804;2018:143–71. https://doi.org/10.1007/978-1-4939-8552-4_6.

    Article  CAS  Google Scholar 

  9. Liang YJ, Wang CY, Wang IA, Chen YW, Li LT, Lin CY, et al. Interaction of glycosphingolipids GD3 and GD2 with growth factor receptors maintains breast cancer stem cell phenotype. Oncotarget. 2017;8(29):47454–73. https://doi.org/10.18632/oncotarget.17665.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li Q, Sun M, Yu M, Fu Q, Jiang H, Yu G, et al. Gangliosides profiling in serum of breast cancer patient: GM3 as a potential diagnostic biomarker. Glycoconj J. 2019;36(5):419–28. https://doi.org/10.1007/s10719-019-09885-z.

    Article  CAS  PubMed  Google Scholar 

  11. Liu J, Zheng X, Pang X, Li L, Wang J, Yang C, et al. Ganglioside GD3 synthase (GD3S), a novel cancer drug target. Acta Pharm Sin B. 2018;8(5):713–20. https://doi.org/10.1016/j.apsb.2018.07.009.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sarkar TR, Battula VL, Werden SJ, Vijay GV, Ramirez-Pena EQ, Taube JH, et al. GD3 synthase regulates epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene. 2015;34(23):2958–67. https://doi.org/10.1038/onc.2014.245.

    Article  CAS  PubMed  Google Scholar 

  13. Li Z, Sun Y, Qu M, Wan H, Cai F, Zhang P. Inhibiting the MNK-eIF4E-beta-catenin axis increases the responsiveness of aggressive breast cancer cells to chemotherapy. Oncotarget. 2017;8(2):2906–15. https://doi.org/10.18632/oncotarget.13772.

    Article  PubMed  Google Scholar 

  14. Li Z, Qu M, Sun Y, Wan H, Chai F, Liu L, et al. Blockage of cytosolic phospholipase A2 alpha sensitizes aggressive breast cancer to doxorubicin through suppressing ERK and mTOR kinases. Biochem Biophys Res Commun. 2018;496(1):153–8. https://doi.org/10.1016/j.bbrc.2018.01.016.

    Article  CAS  PubMed  Google Scholar 

  15. Smith L, Watson MB, O’Kane SL, Drew PJ, Lind MJ, Cawkwell L. The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays. Mol Cancer Ther. 2006;5(8):2115–20. https://doi.org/10.1158/1535-7163.MCT-06-0190.

    Article  CAS  PubMed  Google Scholar 

  16. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47. https://doi.org/10.1016/j.ejca.2008.10.026.

    Article  CAS  Google Scholar 

  17. Nguyen K, Yan Y, Yuan B, Dasgupta A, Sun J, Mu H, et al. ST8SIA1 regulates tumor growth and metastasis in TNBC by activating the FAK-AKT-mTOR Signaling Pathway. Mol Cancer Ther. 2018;17(12):2689–701. https://doi.org/10.1158/1535-7163.MCT-18-0399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 1996;10(12):1443–54. https://doi.org/10.1101/gad.10.12.1443.

    Article  CAS  PubMed  Google Scholar 

  19. Battula VL, Shi Y, Evans KW, Wang RY, Spaeth EL, Jacamo RO, et al. Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Investig. 2012;122(6):2066–78. https://doi.org/10.1172/JCI59735.

    Article  CAS  PubMed  Google Scholar 

  20. Ruckhaberle E, Karn T, Rody A, Hanker L, Gatje R, Metzler D, et al. Gene expression of ceramide kinase, galactosyl ceramide synthase and ganglioside GD3 synthase is associated with prognosis in breast cancer. J Cancer Res Clin Oncol. 2009;135(8):1005–13. https://doi.org/10.1007/s00432-008-0536-6.

    Article  CAS  PubMed  Google Scholar 

  21. Li W, Zheng X, Ren L, Fu W, Liu J, Xv J, et al. Epigenetic hypomethylation and upregulation of GD3s in triple negative breast cancer. Ann Transl Med. 2019;7(23):723. https://doi.org/10.21037/atm.2019.12.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bobowski M, Vincent A, Steenackers A, Colomb F, Van Seuningen I, Julien S, et al. Estradiol represses the G(D3) synthase gene ST8SIA1 expression in human breast cancer cells by preventing NFkappaB binding to ST8SIA1 promoter. PLoS One. 2013;8(4):e62559. https://doi.org/10.1371/journal.pone.0062559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cazet A, Lefebvre J, Adriaenssens E, Julien S, Bobowski M, Grigoriadis A, et al. GD(3) synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Mol Cancer Res. 2010;8(11):1526–35. https://doi.org/10.1158/1541-7786.MCR-10-0302.

    Article  CAS  PubMed  Google Scholar 

  24. Cazet A, Groux-Degroote S, Teylaert B, Kwon KM, Lehoux S, Slomianny C, et al. GD3 synthase overexpression enhances proliferation and migration of MDA-MB-231 breast cancer cells. Biol Chem. 2009;390(7):601–9. https://doi.org/10.1515/BC.2009.054.

    Article  CAS  PubMed  Google Scholar 

  25. Lee JJ, Loh K, Yap YS. PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biol Med. 2015;12(4):342–54. https://doi.org/10.7497/j.issn.2095-3941.2015.0089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang T, Seah S, Loh X, Chan CW, Hartman M, Goh BC, et al. Simvastatin-induced breast cancer cell death and deactivation of PI3K/Akt and MAPK/ERK signalling are reversed by metabolic products of the mevalonate pathway. Oncotarget. 2015. https://doi.org/10.18632/oncotarget.6304.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev. 2004;68(2):320–44. https://doi.org/10.1128/MMBR.68.2.320-344.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liang YJ, Ding Y, Levery SB, Lobaton M, Handa K, Hakomori SI. Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells. Proc Natl Acad Sci USA. 2013;110(13):4968–73. https://doi.org/10.1073/pnas.1302825110.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the staff of the Department of Oncology, Sanya People’s Hospital and Hannan People’s Hospital for their assistance with patient samples. This work was supported by Hainan Provincial Natural Science Foundation of China (Grant no. 814315).

Author information

Authors and Affiliations

Authors

Contributions

HXW and LW designed the experiments, interpreted the data and wrote the manuscript. ZQL, HW and FC performed the experiments. All authors approved the final manuscripts.

Corresponding author

Correspondence to L. Wang.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Research involving human participants and/or animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 569 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, H., Li, Z., Wang, H. et al. ST8SIA1 inhibition sensitizes triple negative breast cancer to chemotherapy via suppressing Wnt/β-catenin and FAK/Akt/mTOR. Clin Transl Oncol 23, 902–910 (2021). https://doi.org/10.1007/s12094-020-02484-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02484-7

Keywords

Navigation