Skip to main content

Advertisement

Log in

XPA gene rs1800975 single nucleotide polymorphism and lung cancer risk: a meta-analysis

  • Research Article
  • Published:
Tumor Biology

Abstract

No clear consensus has been reached on the XPA gene rs1800975 polymorphism and lung cancer risk. We performed a meta-analysis in an effort to systematically explore the possible association. We conducted a computer retrieval of PubMed, Embase, Wanfang, China National Knowledge Infrastructure Platform, and VIP databases prior to November 2013. References of retrieved articles were also screened. The fixed- and the random-effects model were applied for dichotomous outcomes to combine the results of the individual studies. According to the inclusion criteria, 10 articles (11 studies) were finally included. In overall, statistical association could be found between rs1800975 polymorphism and lung cancer in recessive genetic model [AA vs. (AG + GG): P = 0.02, OR = 1.16, 95% CI 1.02–1.31, P heterogeneity = 0.14, fixed-effects model]. In the East Asians, significant association was found in allele comparison model (A vs. G: P = 0.03, OR = 1.13, 95% CI 1.01–1.26, P heterogeneity = 0.39, fixed-effects model), in recessive genetic model [AA vs. (AG + GG): P = 0.005, OR = 1.30, 95% CI 1.08–1.56, P heterogeneity = 0.58, fixed-effects model] and in the homozygote comparison (AA vs. GG: P = 0.02, OR = 1.30, 95% CI 1.04–1.63, P heterogeneity = 0.39, fixed-effects model). No evidence suggested that rs1800975 polymorphism might associate with lung cancer in other ethnicities. Stratification analysis performed by histologic types indicated that AA genotype might represent a risk factor for squamous cell carcinoma [AA vs. (AG + GG): P = 0.01, OR = 1.42, 95% CI 1.08–1.86, P heterogeneity = 0.27, fixed-effects model; AA vs. GG: P = 0.03, OR = 1.43, 95% CI 1.04–1.96, P heterogeneity = 0.21, fixed-effects model]. No association was observed in adenocarcinoma subgroup. Our study suggested that XPA rs1800975 polymorphism might associate with lung cancer risk in overall and in East Asians. This polymorphism might also associate with squamous cell carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  2. National Comprehensive Cancer Network NCCN: Non-Small Cell Lung Cancer USA. NCCN clinical practice guidelines in oncology: non-small cell lung cancer V.2.2013.

  3. National Comprehensive Cancer Network: NCCN Small Cell Lung Cancer USA. NCCN clinical practice guidelines in oncology: small cell lung cancer V.1.2014.

  4. Khuder SA. Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer. 2001;31:139–48.

    Article  CAS  PubMed  Google Scholar 

  5. International Agency for the Research on Cancer (IARC). Monograph on tobacco smoke and involuntary smoking, vol. 83. Lyon: IARC, 2004.

  6. Bak H, Autrup H, Thomsen BL, Tjonneland A, Overvad K, Vogel U, et al. Bulky DNA adducts as risk indicator of lung cancer in a Danish case—cohort study. Int J Cancer. 2006;118:1618–22.

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka K, Satokata I, Ogita Z, Uchida T, Okada Y. Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum. Proc Natl Acad Sci U S A. 1989;86:5512–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Braithwaite E, Wu X, Wang Z. Repair of DNA lesions induced by polycyclic aromatic hydrocarbons in human cell-free extracts: involvement of two excision repair mechanisms in vitro. Carcinogenesis. 1998;19:1239–46.

    Article  CAS  PubMed  Google Scholar 

  9. Volker M, Mone M, Karmakar P, van Hoffen A, Schul W, Vermeulen W, et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell. 2001;8:213–24.

    Article  CAS  PubMed  Google Scholar 

  10. Sugasawa K, Okamoto T, Shimizu Y, Masutani C, Iwai S, Hanaoka F. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 2001;15:507–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Yokoi M, Masutani C, Maekawa T, Sugasawa K, Ohkuma Y, Hanaoka F. The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in recruitment of transcription factor IIH to damaged DNA. J Biol Chem. 2000;275:9870–5.

    Article  CAS  PubMed  Google Scholar 

  12. Butkiewicz D, Rusin M, Harris CC, Chorazy M. Identification of four single nucleotide polymorphisms in DNA repair genes: XPA and XPB (ERCC3) in Polish population. Hum Mutat. 2000;15:577–8.

    Article  CAS  PubMed  Google Scholar 

  13. Kozak M. Interpreting cDNA sequences: some insights from studies on translation. Mamm Genome. 1996;7:563–74.

    Article  CAS  PubMed  Google Scholar 

  14. Wu X, Zhao H, Wei Q, Amos CI, Zhang K, Guo Z, et al. XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excisionrepair capacity. Carcinogenesis. 2003;24:505–9.

    Article  CAS  PubMed  Google Scholar 

  15. Woolf B. On estimating the relation between blood group and disease. Ann Hum Genet. 1955;19:251–3.

    Article  CAS  PubMed  Google Scholar 

  16. Niu W, Qi Y, Gao P, Zhu D. Association of TGFB1–509C>T polymorphism with breast cancer: evidence from a meta-analysis involving 23,579 subjects. Breast Cancer Res Treat. 2010;124:243–9.

    Article  CAS  PubMed  Google Scholar 

  17. Guedj M, Nuel G, Prum B. A note on allelic tests in case–control association studies. Ann Hum Genet. 2008;72:407–9.

    Article  CAS  PubMed  Google Scholar 

  18. Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews. Ann Intern Med. 1997;127:820–6.

    Article  CAS  PubMed  Google Scholar 

  19. Petitti D. Meta-analysis, decision analysis, and cost-effectiveness analysis. New York: Oxford University Press; 1994. p. 15–20.

    Google Scholar 

  20. van Houwelingen HC, Arends LR, Stijnen T. Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med. 2002;21:589–624.

    Article  PubMed  Google Scholar 

  21. Egger M, Davey Smith G, Schneider M, Minder C. Bias in metaanalysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zeng H, Kang MF. Association between XPA A23G polymorphism and XPG His1104Asp polymorphism in lung cancer. Guang Dong Medical Journal. 2013;34:413–6 (in Chinese).

    CAS  Google Scholar 

  23. Zhu JF, Chen YJ, Zhou JN, Xu L, Huo X, Ma HX, et al. The single nucleotide polymorphism in the promotor of DNA repair gene XPA and in association with the risk of lung cancer. Zhong Liu. 2005;25:246–9 (in Chinese).

    CAS  Google Scholar 

  24. Sakoda LC, Loomis MM, Doherty JA, Julianto L, Barnett MJ, Neuhouser ML, et al. Germ line variation in nucleotide excision repair genes and lung cancer risk in smokers. Int J Mol Epidemiol Genet. 2012;3:1–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Park JY, Park SH, Choi JE, Lee SY, Jeon HS, Cha SI, et al. Polymorphisms of the DNA repair gene xeroderma pigmentosum group A and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev. 2002;11:993–7.

    CAS  PubMed  Google Scholar 

  26. Butkiewicz D, Popanda O, Risch A, Edler L, Dienemann H, Schulz V, et al. Association between the risk for lung adenocarcinoma and a (−4) G-to-A polymorphism in the XPA gene. Cancer Epidemiol Biomarkers Prev. 2004;13:2242–6.

    CAS  PubMed  Google Scholar 

  27. Zienolddiny S, Campa D, Lind H, Ryberg D, Skaug V, Stangeland L, et al. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis. 2006;27:560–7.

    Article  CAS  PubMed  Google Scholar 

  28. De Ruyck K, Szaumkessel M, De Rudder I, Dehoorne A, Vral A, Claes K, et al. Polymorphisms in base-excision repair and nucleotide-excision repair genes in relation to lung cancer risk. Mutat Res. 2007;631:101–10.

    Article  PubMed  Google Scholar 

  29. Raaschou-Nielsen O, Sørensen M, Overvad K, Tjønneland A, Vogel U. Polymorphisms in nucleotide excision repair genes, smoking and intake of fruit and vegetables in relation to lung cancer. Lung Cancer. 2008;59:171–9.

    Article  PubMed  Google Scholar 

  30. Qian B, Zhang H, Zhang L, Zhou X, Yu H, Chen K. Association of genetic polymorphisms in DNA repair pathway genes with non-small cell lung cancer risk. Lung Cancer. 2011;73:138–46.

    Article  PubMed  Google Scholar 

  31. Popanda O, Schattenberg T, Phong CT, Butkiewicz D, Risch A, Edler L, et al. Specific combinations of DNA repair gene variants and increased risk for non-small cell lung cancer. Carcinogenesis. 2004;25:2433–41.

    Article  CAS  PubMed  Google Scholar 

  32. Vogel U, Overvad K, Wallin H, Tjønneland A, Nexø BA, Raaschou-Nielsen O. Combinations of polymorphisms in XPD, XPC and XPA in relation to risk of lung cancer. Cancer Lett. 2005;222:67–74.

    Article  CAS  PubMed  Google Scholar 

  33. Zou JH, An L, Chen S, Ren LQ. XPA A23G polymorphism and lung cancer risk: a meta-analysis. Mol Biol Rep. 2012;39:1435–40.

    Article  CAS  PubMed  Google Scholar 

  34. Pesch B, Kendzia B, Gustavsson P, Jöckel KH, Johnen G, Pohlabeln H, et al. Cigarette smoking and lung cancer-relative risk estimates for the major histological types from a pooled analysis of case–control studies. Int J Cancer. 2012;131:1210–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Dinant C, Bartek J, Bekker-Jensen S. Histone displacement during nucleotide excision repair. Int J Mol Sci. 2012;13:13322–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009;361:1475–85.

    Article  CAS  PubMed  Google Scholar 

  37. Akiri G, Nahari D, Finkelstein Y, Le SY, Elroy-Stein O, Levi BZ. Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene. 1998;17:227–36.

    Article  CAS  PubMed  Google Scholar 

  38. Larsen LK, Amri EZ, Mandrup S, Pacot C, Kristiansen K. Genomic organization of the mouse peroxisome proliferator-activated receptor beta/delta gene: alternative promoter usage and splicing yield transcripts exhibiting differential translational efficiency. Biochem J. 2002;366:767–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Pan-Asian SNP Consortium HUGO, Abdulla MA, Ahmed I, Assawamakin A, Bhak J, Brahmachari SK, et al. Mapping human genetic diversity in Asia. Science. 2009;326:1541–5.

    Article  Google Scholar 

  40. Cai X, Qin Z, Wen B, Xu S, Wang Y, Lu Y, et al. Human migration through bottlenecks from Southeast Asia into East Asia during last glacial maximum revealed by Y chromosomes. PLoS One. 2011;6:e24282.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Shi H, Dong YL, Wen B, Xiao CJ, Underhill PA, Shen PD, et al. Y chromosome evidence of southern origin of the East Asian-specific haplogroup O3-M122. Am J Hum Genet. 2005;77:408–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Wen B, Li H, Lu D, Song X, Zhang F, He Y, et al. Genetic evidence supports demic diffusion of Han culture. Nature. 2004;431:302–5.

    Article  CAS  PubMed  Google Scholar 

  43. Xu S, Yin X, Li S, Jin W, Lou H, Yang L, et al. Genomic dissection of population substructure of Han Chinese and its implication in association studies. Am J Hum Genet. 2009;85:762–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science foundation of China (81201839 and 81101770), the Research Project of Shanghai Municipal Commission of Health and Family Planning (20124Y108), the Excellent Young Teachers Program of Shanghai Jiaotong University School of Medicine, and the Science and Technology Foundation of Shanghai Chest Hospital (YZ12-03).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueyan Zhang or Baohui Han.

Additional information

Y. Lou and R. Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, Y., Li, R., Zhang, Y. et al. XPA gene rs1800975 single nucleotide polymorphism and lung cancer risk: a meta-analysis. Tumor Biol. 35, 6607–6617 (2014). https://doi.org/10.1007/s13277-014-1824-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1824-1

Keywords

Navigation