Skip to main content

Advertisement

Log in

Temperature dependent morphological changes on algal growth and cell surface with dairy industry wastewater: an experimental investigation

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In the present study, influence of temperature and dairy industry waste water (DIWW) concentration on the growth of Chlorella pyrenoidosa has been done along with the thermodynamic analysis of different functions viz. change in enthalpy (∆H), change in entropy (∆S), free energy change (∆G), and activation energy (Ea) to study the impact on cell size distribution and morphological changes. Among the studied temperatures, higher biomass productivity was observed at 35 °C at 75% of DIWW. Thermodynamic analysis showed the spontaneous and exothermic nature of growth of C. pyrenoidosa. Experimental data have significantly proven the kinetic and thermodynamics functions with 35 °C temperature, ∆H (− 46.78 kJ mol−1), ∆S (− 0.10 kJ mol−1), ∆G (− 14.8 kJ mol-1), and Ea (49.28 kJ mol−1). At this temperature, size distribution showed maximum percentage (48%) cells were of 6540 nm, whereas the minimum percentage (3%) cells were of 2750 nm. SEM–EDX study revealed that increase in temperature leads to increase in roughness and elemental deposition of metal on cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad S, Pathak VV, Kothari R, Kumar A, Krishna SBN (2018) Optimization of nutrient stress using C. pyrenoidosa for lipid and biodiesel production in integration with remediation in dairy industry wastewater using response surface methodology. 3 Biotech 8:326

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad S, Kothari R, Pathania D, Tyagi VV (2019) Optimization of nutrients from wastewater using RSM for augmentation of Chlorella pyrenoidosa with enhanced lipid productivity, FAME content, and its quality assessment using fuel quality index. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-019-00443-z

    Article  CAS  Google Scholar 

  • APHA, AWWA, WEF (2012) Standard methods for examination of water and wastewater, 22nd edn. American Public Health Association, Washington, p 1360 (ISBN 978-087553-013-0)

    Google Scholar 

  • Ashok V, Shriwastav A, Bose P, Gupta SK (2019) Phycoremediation of wastewater using algal-bacterial photobioreactor: effect of nutrient load and light intensity. Bioresour Technol Rep 7:100205

    Article  Google Scholar 

  • Bajguz A (2009) Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short-term heat stress. J Plant Physiol 8:882–886

    Article  CAS  Google Scholar 

  • Bisova K, Zachleder V (2014) Cell-cycle regulation in green algae dividing by multiple fission. J Exp Bot 10:2585–2602

    Article  CAS  Google Scholar 

  • Bita C, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Bramburger AJ, Reavie ED, Sgro GV, Estepp LR, Chraïbi VS, Pillsbury RW (2017) Decreases in diatom cell size during the 20th century in the Laurentian Great Lakes: a response to warming waters. J Plankton Res 39:199–210

    Article  Google Scholar 

  • Brown JH, West GB, Enquist BJ (2005) Yes, West, Brown and Enquist’s model of allometric scaling is both mathematically correct and biologically relevant. Funct Ecol 19:735–738

    Article  Google Scholar 

  • Campbell K, Herrera-Dominguez L, Correia-Melo C, Zelezniak A, Ralser M (2017) Biochemical principles enabling metabolic cooperativity and phenotypic heterogeneity at the single cell level. Curr Opin Syst Biol 8:97–108

    Article  Google Scholar 

  • Cassidy KO (2012) Evaluating algal growth at different temperatures. Thesis, University of Kentucky, UK

  • Gonzalez-Meler MA, Taneva LINA, Trueman RJ (2004) Plant respiration and elevated atmospheric CO2 concentration: cellular responses and global significance. Ann Bot 94:647–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darley WM (1982) Algal biology: a physiological approach, 9th edn. Blackwell, Oxford, p 1168

    Google Scholar 

  • Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32:119–137

    Article  CAS  Google Scholar 

  • Harris GP (1986) Phytoplankton ecology: structure, function and fluctuation. Chapman and Hall, New York

    Book  Google Scholar 

  • Huang W, Li B, Zhang C, Zhang Z, Lei Z, Lu B, Zhou B (2015) Effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors. Bioresour Technol 179:187–192

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar R, Rajasimman M, Karthikeyan C (2015) Optimization, equilibrium, kinetic, thermodynamic and desorption studies on the sorption of Cu (II) from an aqueous solution using marine green algae: Halimeda gracilis. Ecotox Environ Saf 121:199–210

    Article  CAS  Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Article  CAS  Google Scholar 

  • Kang D, Kim K, Jang Y, Moon H, Ju D, Kwon G, Jahng D (2018) Enhancement of wastewater treatment efficiency through modulation of aeration and blue light on wastewater-borne algal-bacterial consortia. Int Biodeterior Biodegrad 135:9–18

    Article  CAS  Google Scholar 

  • Kothari R, Pandey A, Ahmad S, Kumar A, Pathak VV, Tyagi VV (2017) Microalgal cultivation for value-added products: a critical enviro-economical assessment. 3 Biotech 7:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Kothari R, Pathak VV, Pandey A, Ahmad S, Srivastava C, Tyagi VV (2017b) A novel method to harvest Chlorella sp. via low cost bioflocculant: influence of temperature with kinetic and thermodynamic functions. Bioresour Technol 225:84–89

    Article  CAS  PubMed  Google Scholar 

  • Larras F, Lambert AS, Pesce S, Rimet F, Bouchez A, Montuelle B (2013) The effect of temperature and a herbicide mixture on freshwater periphytic algae. Ecotoxicol Environ Saf 98:162–170

    Article  CAS  PubMed  Google Scholar 

  • Li B, Zhang T, Yang Z (2019) Immobilizing unicellular microalga on pellet-forming filamentous fungus: can this provide new insights into the remediation of arsenic from contaminated water? Bioresour Technol 284:231–239

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ying K, Chen G, Zhou C, Zhang W, Zhang X, Tao Y (2017) Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide. Chemosphere 186:977–985

    Article  CAS  PubMed  Google Scholar 

  • Lucia U (2015) Bioengineering thermodynamics of biological cells. Theor Biol Med Model 12:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mackey KR, Paytan A, Caldeira K, Grossman A, Moran D, McIlvin M, Saito M (2013) Effect of temperature on photosynthesis and growth in marine Synechococcus. Plant Physiol 63(2):815–829

    Article  CAS  Google Scholar 

  • Malakootian M, Hatami B, Dowlatshahi S, Rajabizadeh A (2016) Growth and lipid accumulation in response to different cultivation temperatures in Nannochloropsis oculata for biodiesel production. Environ Health Eng Manag J 1:29–34

    Google Scholar 

  • Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiol B Biol 137:116–126

    Article  CAS  Google Scholar 

  • Mondal M, Shrayanti G, Ashmita G, Gunapati O, Tiwari ON, Papita D, Gayen K, Mandal MK, Halder GN (2017) Production of biodiesel from microalgae through biological carbon capture: a review. 3 Biotech 7:99

    Article  PubMed  PubMed Central  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pasaribu B, Li YS, Kuo PC, Lin IP, Tew KS, Tzen JT, Liao YK, Chen CS, Jiang PL (2016) The effect of temperature and nitrogen deprivation on cell morphology and physiology of Symbiodinium. Oceanologia 58(4):272–278

    Article  Google Scholar 

  • Peter KH, Sommer U (2015) Interactive effect of warming, nitrogen and phosphorus limitation on phytoplankton cell size. Ecol Evol 5:1011–1024

    Article  PubMed  PubMed Central  Google Scholar 

  • Piontek J, Handel N, Langer G, Wohlers J, Riebesell U, Engel A (2009) Effects of rising temperature on the formation and microbial degradation of marine diatom aggregates. Aquat Microb Ecol 54:305–318

    Article  Google Scholar 

  • Ras M, Steyer JP, Bernard O (2013) Temperature effect on microalgae: a crucial factor for outdoor production. Rev Env Sci Biotech 12(2):153–164

    Article  CAS  Google Scholar 

  • Rasconi S, Gall A, Winter K, Kainz M (2015) Increasing water temperature triggers dominance of freshwater picoplankton. PLoS ONE 10(10):e0140449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rhee GY (1982) Effects of environmental factors and their interactions on phytoplankton growth. Adv Microb Ecol 6:33–74

    Article  Google Scholar 

  • Sammarco PW, Strychar KB (2013) Responses to high seawater temperatures in Zooxanthellate Octocorals. PLoS ONE 8(2):54989

    Article  CAS  Google Scholar 

  • Shukla M, Kumar S (2018) Algal growth in photosynthetic algal microbial fuel cell and its subsequent utilization for biofuels. Renew Sust Energ Rev 82:402–414

    Article  CAS  Google Scholar 

  • Shurair M, Almomani F, Bhosale R, Khraisheh M, Qiblawey H (2019) Harvesting of intact microalgae in single and sequential conditioning steps by chemical and biological based–flocculants: effect on harvesting efficiency, water recovery and algal cell morphology. Bioresour Technol 281:250–259

    Article  CAS  PubMed  Google Scholar 

  • Simionato D, Block MA, La Rocca N, Jouhet J, Marechal E, Finazzi G, Morosinotto T (2013) Response of Nannochloropsis gaditana to nitrogen starvation includes a de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids and a reorganization of the photosynthetic apparatus. Eukaryot Cell 12(5):665–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SP, Singh P (2014) Effect of CO2 concentration on algal growth: a review. Renew Sust Energ Rev 38:172–179

    Article  CAS  Google Scholar 

  • Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sust Energ Rev 50:431–444

    Article  CAS  Google Scholar 

  • Teleken JT, Galvao AC, Da Silva RW (2018) Use of modified Richards model to predict isothermal and non-isothermal microbial growth. Braz J Microbiol 49(3):614–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tikkanen M, Grieco M, Nurmi M, Rantala M, Suorsa M, Aro EM (2012) Regulation of the photosynthetic apparatus under fluctuating growth light. Philos Trans R Soc 367:3486–3493

    Article  CAS  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2007) Influence of irradiance, dissolved oxygen concentration, and temperature on the growth of Chlorella sorokiniana. Photosynthetica 2:309–311

    Article  Google Scholar 

  • Yadala S, Cremaschi S (2014) Design and optimization of artificial cultivation units for algae production. Energy 78:23–39

    Article  Google Scholar 

  • Yvondurocher G, Montoya JM, Trimmer M, Woodward GUY (2011) Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Glob Change Biol 17:1681–1694

    Article  Google Scholar 

  • Zhou H, Li X, Xu G, Yu H (2018) Overview of strategies for enhanced treatment of municipal/domestic wastewater at low temperature. Sci Total Environ 643:225–237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors and co-authors of the article are very thankful to UGC, India for proving financial assistance and to Head, Department of Environmental Science and Director, USIC of BBAU, Lucknow, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Kothari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Kothari, R., Shankarayan, R. et al. Temperature dependent morphological changes on algal growth and cell surface with dairy industry wastewater: an experimental investigation. 3 Biotech 10, 24 (2020). https://doi.org/10.1007/s13205-019-2008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-2008-x

Keywords

Navigation