Skip to main content
Log in

Admittance of barrier nanostructures based on MBE HgCdTe

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Mid- and long-wave infrared nBn structures based on HgCdTe grown by molecular beam epitaxy (MBE) on GaAs (013) substrates were fabricated. For mid-wave nBn structures, the composition in the absorbing layer was 0.29, and for long-wave nBn structures, this composition was 0.21. The composition in the MBE HgCdTe barrier layers ranged from 0.61 to 0.67. Based on the fabricated HgCdTe nBn structures, test metal–insulator–semiconductor (MIS) devices were created by applying a dielectric Al2O3 film with the thickness of about 90 nm. The admittance of test MIS devices was investigated over a wide range of frequencies and temperatures. An equivalent circuit of MIS device based on MBE HgCdTe nBn structure is proposed, which includes the dielectric capacitance, the capacitance and resistance of the barrier layer, and the series resistance of the absorbing layer bulk. It is shown that the values of the equivalent circuit elements are easy to determine from the experimental frequency dependences of admittance in accumulation mode. Comparison of element values for MIS devices based on mid-wave and long-wave nBn structures is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akhavan ND, Umana-Membreno GA, Jolley G, Antoszewski J, Faraone L (2014) A method of removing the valence band discontinuity in HgCdTe-based nBn detectors. Appl Phys Lett 105:121110

    Article  Google Scholar 

  • Baier N, Cervera C, Gravrand O, Mollard L, Lobre C, Destefanis G, Zanatta JP, Boulade O, Moreau V (2015) Latest developments in long-wavelength and very-long-wavelength infrared detection with p-on-n HgCdTe. J Electron Mater 44:3144–3150

    Article  CAS  Google Scholar 

  • Dehzangi A, Wu D, McClintock R, Li J, Razeghi M (2020) Planar nBn type-II superlattice mid-wavelength infrared photodetectors using zinc ion-implantation. Appl Phys Lett 116:221103

    Article  CAS  Google Scholar 

  • Delli E, Letka V, Hodgson PD, Repiso E, Hayton JP, Craig AP, Lu Q, Beanland R, Krier A, Marshall ARJ, Carrington PJ (2019) Mid-infrared InAs/InAsSb superlattice nBn photodetector monolithically integrated onto silicon. ACS Photon 6:538–544

    Article  CAS  Google Scholar 

  • Evirgen A, Abautret J, Perez JP, Cordat A, Nedelcu A, Christol P (2014) Midwave infrared InSb nBn photodetector. Electron Lett 50:1472–1473

    Article  CAS  Google Scholar 

  • Fu R, Pattison J (2012) Advanced thin conformal Al2O3 films for high aspect ratio mercury cadmium telluride sensors. Opt Engin 51:104003

    Google Scholar 

  • Glasmann A, Prigozhin I, Bellotti E (2019) Understanding the CV characteristics of InAsSb-based nBn infrared detectors with N-and P-type barrier layers through numerical modeling. IEEE J Electron Dev Soc 7:534–543

    Article  CAS  Google Scholar 

  • Gravrand O, Boulard F, Ferron A, Ballet P, Hassis W (2015) A new nBn IR detection concept using hgcdte material. J Electron Mater 44:3069–3075

    Article  CAS  Google Scholar 

  • He J, Wang P, Li Q, Wang F, Gu Y, Shen C, Chen L, Martuniyk P, Rogalski A, Chen X, Lu W, Hu W (2020) Enhanced performance of HgCdTe long-wavelength infrared photodetectors with nBn design. IEEE Trans Electron Dev 67:2001–2007

    Article  CAS  Google Scholar 

  • Itsuno AM, Phillips JD, Velicu S (2012a) Mid-wave infrared HgCdTe nBn photodetector. Appl Phys Lett 100:161102

    Article  Google Scholar 

  • Itsuno AM, Phillips JD, Velicu S (2012b) Design of an Auger-suppressed unipolar HgCdTe NBνN photodetector. J Electron Mater 41:2886–2892

    Article  CAS  Google Scholar 

  • Kopytko M, Rogalski A (2016) HgCdTe barrier infrared detectors. Prog Quant Electron 47:1–18

    Article  Google Scholar 

  • Kopytko M, Wróbel J, Jóźwikowski K, Rogalski A, Antoszewski J, Akhavan ND, Umana-Membreno GA, Faraone L, Becker CR (2015) Engineering the bandgap of unipolar HgCdTe-based nBn infrared photodetectors. J Electron Mater 44:158–166

    Article  CAS  Google Scholar 

  • Lei W, Antoszewski J, Faraone L (2015) Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl Phys Rev 2:041303

    Article  Google Scholar 

  • Lobre C, Jouneau PH, Mollard L, Ballet P (2014) Characterization of the microstructure of HgCdTe with p-type doping. J Electron Mater 43:2908–2914

    Article  CAS  Google Scholar 

  • Maimon S, Wicks GW (2006) nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl Phys Lett 89:151109

    Article  Google Scholar 

  • Martyniuk P, Kopytko M, Rogalski A (2014) Barrier infrared detectors. Opto-Electron Rev 22:127–146

    CAS  Google Scholar 

  • Mollard L, Bourgeois G, Lobre C, Gout S, Viollet-Bosson S, Baier N, Destefanis G, Gravrand O, Barnes JP, Milesi F, Kerlain A, Rubaldo L, Manissadjian A (2014) p-on-n HgCdTe infrared focal-plane arrays: from short-wave to very-long-wave infrared. J Electron Mater 43:802–807

    Article  CAS  Google Scholar 

  • Rhiger DR, Smith EP, Kolasa BP, Kim JK, Klem JF, Hawkins SD (2016) Analysis of III–V superlattice nBn device characteristics. J Electron Mater 45:4646–4653

    Article  Google Scholar 

  • Rogalski A (2019) Infrared and terahertz detectors. CRC Press, Boca Raton

    Book  Google Scholar 

  • Shi C, Lin C, Wei Y, Chen L (2017) Microstructure characterization of lattice defects induced by As ion implantation in HgCdTe epilayers. Proc SPIE 10177:101771C

    Article  Google Scholar 

  • Ting DZ, Soibel A, Khoshakhlagh A, Keo SA, Rafol B, Fisher AM, Pepper BJ, Luong EM, Hill CJ, Gunapala SD (2019) Advances in III-V semiconductor infrared absorbers and detectors. Infrared Phys Technol 97:210–216

    Article  CAS  Google Scholar 

  • Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2019a) Electrical properties of nBn structures based on HgCdTe grown by molecular beam epitaxy on GaAs substrates. Infrared Phys Technol 102:103035

    Article  CAS  Google Scholar 

  • Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2019b) Diffusion-limited dark currents in mid-wave infrared HgCdTd-based nBn structures with Al2O3 passivation. J Phys D Appl Phys 53:055107

    Article  Google Scholar 

  • Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2019c) Admittance dependences of the mid-wave infrared barrier structure based on HgCdTe grown by molecular beam epitaxy. Mater Res Exp 6:116411

    Article  CAS  Google Scholar 

  • Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2020a) Admittance of metal–insulator–semiconductor devices based on HgCdTe nBn structures. Semicond Sci Technol 35:055026

    Article  CAS  Google Scholar 

  • Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2020b) Admittance of Barrier Structures Based on Mercury Cadmium Telluride. Russ Phys J 63:432–445

    Article  CAS  Google Scholar 

  • Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2020c) Impedance of MIS devices based on nbn structures from mercury cadmium telluride. Russ Phys J 63:907–916

    Article  CAS  Google Scholar 

  • Zakirov ER, Kesler VG, Sidorov GY, Prosvirin IP, Gutakovsky AK, Vdovin VI (2019) XPS investigation of the ALD Al2O3/HgCdTe heterointerface. Semicond Sci Technol 34:065007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Science Foundation (Grant No. 19-12-00135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Izhnin.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izhnin, I.I., Voitsekhovskii, A.V., Nesmelov, S.N. et al. Admittance of barrier nanostructures based on MBE HgCdTe. Appl Nanosci 12, 403–409 (2022). https://doi.org/10.1007/s13204-020-01636-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01636-z

Keywords

Navigation