Skip to main content
Log in

Hybrid plasmonic–phononic cavity design for enhanced optomechanical coupling in lithium niobate

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

A hybrid plasmonic–phononic cavity design which enables high vacuum coupling rate has been proposed in lithium niobate (LN) phononic crystals (Phncs) that have been perforated by air holes and coated with thin silver film. By tailoring the geometry, optomechanical interaction between the plasmonic modes (produced by the metal/insulator) and the phononic modes (confined by the phononic bandgap effect) is greatly enhanced. Numerical results based on finite-element method (FEM) reveal that in this hybrid plasmonic–phononic design, high vacuum coupling rate that predominantly contributed by moving boundary effect is on the order of 106 Hz, which is about one to two orders higher than that contributed by photoelastic effect shown in conventional phoxonic crystal designs. Results evidence how the vacuum coupling rate depends on geometrical parameters like the radius of the defect air hole, the thickness of silver layer, and LN layer. The simultaneous confinement and strong coupling, combined with other advantages as lack of constraint to the refractive index, and integration of piezoelectric material and metal in a chip, this hybrid design may be suitable for non-invasive biological sensing, optomechanically tunable plasmonic heater for drug release and lab-on-chip devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andrushchak AS, Mytsyk BG, Laba HP, Yurkevych OV, Solskii IM, Kityk AV, Sahraoui B (2009) Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature. J Appl Phys 106:073510

    Google Scholar 

  • Aspelmeyer M, Kippenberg TJ, Marquardt F (2014) Cavity Optomechanics. Rev Mod phys 86:1391

    Google Scholar 

  • Babic SI, Akyel C (2008) Magnetic force calculation between thin coaxial circular coils in air. IEEE Trans Magn 44:445–452

    Google Scholar 

  • Balram KC, Davanço MI, Song JD, Srinivasan K (2016) Coherent coupling between radiofrequency, optical and acoustic waves in piezooptomechanical circuits. Nat Photonics 10:346–352

    CAS  Google Scholar 

  • Balram KC, Davanco MI, Ilic BR, Kyhm JH, Song JD, Srinivasan K (2017) Acousto-optic modulation and optoacoustic gating in piezo-optomechanical circuits. Phys Rev Appl 7:024008

    Google Scholar 

  • Benz F, Schmidt MK, Dreismann A, Chikkaraddy R, Zhang Y, Demetriadou A, Carnegie C, Ohadi H, de Nijs B, Esteban R, Aizpurua J, Baumberg JJ (2016) Single-molecule optomechanics in “picocavities”. Science 354:726–729

    CAS  Google Scholar 

  • Biegelsen DK (1974) Photoelastic tensor of silicon and the volume dependence of the average gap. Phys Rev Lett 32:1196

    CAS  Google Scholar 

  • Borah R, Verbruggen SW (2019) Coupled plasmon modes in 2D gold nanoparticle clusters and their effect on local temperature control. J Phys Chem C 123:30594–30603

    CAS  Google Scholar 

  • Bordas F, Steel MJ, Seassal C, Rahmani A (2007) Confinement of band-edge modes in a photonic crystal slab. Opt Express 15:10890–10902

    Google Scholar 

  • Cai LT, Mahmoud A, Khan M, Mahmoud M, Mukherjee T, Bain J, Piazza G (2019) Acousto-optical modulation of thin film lithium niobate waveguide devices. Photonics Res 7:1003–1013

    CAS  Google Scholar 

  • Chen ZM, Wu X, Liu LY, Xu L (2017) Optical spring effect in micro-bubble resonators and its application for the effective mass measurement of optomechanical resonant mode. Sensors 17:2256

    Google Scholar 

  • Courjal N, Benchabane S, Dahdah J, Ulliac G, Gruson Y, Laude V (2010) Acousto-optically tunable lithium niobate photonic crystal. Appl Phys Lett 96:131103

    Google Scholar 

  • Dong CH, Fiore V, Kuzyk MC, Wang HL (2012) Optomechanical dark mode. Science 338:1609–1613

    CAS  Google Scholar 

  • Eljallal S, Oudich M, Pennec Y, Rouhani BD, Laude V, Beugnot JC, Martínez A, Escalante J, Makhoute A (2013) Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities. Phys Rev B 88:205410

    Google Scholar 

  • Eljallal S, Oudich M, Pennec Y, Rouhani BD, Makhoute A, Rolland Q, Dupont S, Gazalet J (2014) Optomechanical interactions in twodimensional Si and GaAs phoXonic cavities. J Phys Condens Matter 26:015005

    CAS  Google Scholar 

  • El-Jallal S, Mrabti A, Leveque G, Akjouj A, Pennec Y, Djafari-Rouhani B (2016) Phonon interaction with coupled photonic-plasmonic modes in a phoxonic cavity. AIP Adv 6:122001

    Google Scholar 

  • Ginzburg P, Arbel D, Orenstein M (2006) Gap plasmon polariton structure for very efficient microscale-tonanoscale interfacing. Opt Lett 31:3288–3290

    Google Scholar 

  • Grutter KE, Davanco MI, Srinivasan K (2015) Slot-mode optomechanical crystals: a versatile platform for multimode optomechanics. Optica 2:994–1001

    CAS  Google Scholar 

  • Guarino A, Poberaj G, Rezzonico D, DeglInnocenti R, Günter P (2007) Electro-optically tunable microring resonators in lithium niobate. Nat Photonics 1:407–410

    CAS  Google Scholar 

  • Javerzac-Galy C, Plekhanov K, Bernier NR, Toth LD, Feofanov AK, Kippenberg TJ (2016a) On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Phy Rev A 94:053815

    Google Scholar 

  • Javerzac-Galy C, Plekhanov K, Bernier NR, Toth LD, Feofanov AK, Kippenberg TJ (2016b) On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Phys Rev A 95:053815

    Google Scholar 

  • Jiang WC, Lin Q (2016) Chip-scale cavity optomechanics in lithium niobate. Sci Rep 6:36920

    CAS  Google Scholar 

  • Jiang WT, Patel RN, Mayor FM, Mckenna TP, Arrangoiz-Arriola P, Sarabalis CJ, Witmer JD, Van Laer R, Safavi-Naeini AH (2019) Lithium niobate piezo-optomechanical crystals. Optica 6:845–853

    CAS  Google Scholar 

  • Jiang WT, Sarabalis CJ, Dahmani YD, Patel RN, Mayor FM, McKenna TP, Van Laer R, Safavi-Naeini AH (2020) Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat Commum 11:1166

    CAS  Google Scholar 

  • Johnson SG, Ibanescu M, Skorobogatiy MA, Weisberg O, Joannopoulos JD, Fink Y (2002) Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys Rev E 65:066611

    Google Scholar 

  • Kipfstuhl L, Guldner F, Riedrich-Moller J, Becher C (2014) Modeling of optomechanical coupling in a phoxonic crystal cavity in diamond. Opt Express 22:12410–12423

    Google Scholar 

  • Kwon S-H, No Y-S, Park H-G (2014) Design of plasmonic cavities. Nano Converg 1:8

    Google Scholar 

  • Lakhani AM, Kim MK, Lau EK, Wu MC (2011) Plasmonic crystal defect nanolaser. Opt Express 19:18237–18245

    CAS  Google Scholar 

  • Liang HX, Luo R, He Y, Jiang HW, Lin Q (2017) High-quality lithium niobate photonic crystal nanocavities. Optica 4:1251–1258

    CAS  Google Scholar 

  • Lin TR, Huang YC, Hsu JC (2015) Optomechanical coupling in phoxonic-plasmonic slab cavities with periodic metal strips. J Appl Phys 117:173105

    Google Scholar 

  • Lio GE, Palermo G, Caputo R, De Luca A (2019a) Opto-mechanical control of flexible plasmonic materials. J Appl Phys 125:082533

    Google Scholar 

  • Lio GE, Palermo G, De Luca A, Caputo R (2019b) Tensile control of the thermal flow in plasmonic heaters realized on flexible substrates. J Chem Phys 151:244707

    Google Scholar 

  • Liu JN, Huang QL, Liu KK, Singamaneni S, Cunningham BT (2017) Nanoantenna-microcavity hybrids with highly cooperative plasmonic-photonic coupling. Nano Lett 17:7569–7577

    CAS  Google Scholar 

  • Liu Q, Bibbo L, Albin S, Wang Q, Lin M, Lu HH, Ouyang ZB (2018) Plasmonic waveguide design for the enhanced forward stimulated brillouin scattering in diamond. Sci Rep 8:88

    Google Scholar 

  • Matheny MH (2018) Enhanced photon-phonon coupling via dimerization in one-dimensional optomechanical crystals. Appl Phys Lett 112:253104

    Google Scholar 

  • Miao H, Srinivasan K, Aksyuk V (2012) A microelectromechanically controlled cavity optomechanical sensing system. New J Phys 14:075015

    Google Scholar 

  • Mohammadi S, Eftekhar AA, Khelif A, Moubchir H, Westafer R, Hunt WD, Adibi A (2007) Complete phononic bandgaps and bandgap maps in two-dimensional silicon phononic crystal plates. Electron Lett 43:898–899

    CAS  Google Scholar 

  • Mrabti A, Lévêque G, Akjouj A, Pennec Y, Djafari-Rouhani B (2016) Elastoplasmonic interaction in metal-insulator-metal localized surface plasmon systems. Phy Rev B 94:075405

    Google Scholar 

  • Oudich M, Eljallal S, Pennec Y, Rouhani BD, Bresco JG, Urrios DN, Torres CMS, Martínez A, Makhoute A (2014) Optomechanic interaction in a corrugated phoxonic nanobeam cavity. Phys Rev B 89:245122

    Google Scholar 

  • Oumekloul Z, Moutaouekkil M, Leveque G, Talbi A, Mir A, Akjouj A (2020) Nanomechanical modulation cavities of localized surface plasmon resonance with elastic whispering-gallery modes. J Appl Phys 127:023105

    Google Scholar 

  • Qiu WJ, Rakich PT, Shin H, Dong H, Soljacic M, Wang Z (2013) Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain. Opt Express 21:31402–31419

    Google Scholar 

  • Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283

    Google Scholar 

  • Rakich PT, Davids P, Wang Z (2010) Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces. Opt Express 18:14439–14453

    CAS  Google Scholar 

  • Ren Y, Lu YH, Zang TY, Wang Y, Dai YQ, Wang P (2017) Multi-mode resonance properties of two-dimensional metal-dielectric-metal fishnet metasurface at visible wavelengths. Opt Express 25:28417–28426

    CAS  Google Scholar 

  • Rolland AQ, Oudich M, El-Jallal S, Dupont S, Pennec Y, Gazalet J, Kastelik JC, Leveque G, DjafariRouhani B (2012) Acousto-optic couplings in two-dimensional phoxonic crystal cavities. Appl Phys Lett 101:061109

    Google Scholar 

  • Rolland Q, Dupont S, Gazalet J, Kastelik JC, Pennec Y, Djafari-Rouhani B, Laude V (2014) Simultaneous bandgaps in LiNbO3 phoxonic crystal slab. Opt Express 22:16288–16297

    Google Scholar 

  • Roussey M, Bernal MP, Courjal N, Baida FI (2005) Experimental and theoretical characterization of a lithium niobate photonic crystal. Appl Phys Lett 87:241101

    Google Scholar 

  • Salari V, Barzanjeh S, Cifra M, Simon C, Scholkmann F, Alirezaei Z, Tuszynski JA (2018) Electromagnetic fields and optomechanics in cancer diagnostics and treatment. Front Biosci Landmark 23:1391–1406

    CAS  Google Scholar 

  • Shafiei F, Monticone F, Le KQ, Liu XX, Hartsfield T, Alu A, Li XQ (2013) A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat Nanotechnol 8:95–99

    CAS  Google Scholar 

  • Shao LB, Yu MJ, Maity S, Sinclair N, Zheng L, Chia C, Shams-Ansari A, Wang C, Zhang M, Lai KJ, Loncar M (2019) Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica 6:1498–1505

    Google Scholar 

  • Vainsencher A, Satzinger KJ, Peairs GA, Cleland AN (2016) Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device. Appl Phys Lett 109:033107

    Google Scholar 

  • Verhagen E, Deleglise S, Weis S, Schliesser A, Kippenberg TJ (2012) Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482:63–67

    CAS  Google Scholar 

  • Vila EF, Garcia-Martin JM, Cebollada A, Armelles G, Gonzalez MU (2013) Magnetic modulation of surface plasmon modes in magnetoplasmonic metal-insulator-metal cavities. Opt Express 21:4917–4930

    Google Scholar 

  • Wang Z, Liu WX, Yu TB, Wang TB, Li HM, Liu NH, Liao QH (2016) Simultaneous localization of photons and phonons within the transparency bands of LiNbO3 phoxonic quasicrystals. Opt Express 24:23353–23360

    CAS  Google Scholar 

  • Weis RS, Gaylord TK (1985) Lithium Niobate: Summary of Physical Properties and Crystal Structure. Appl Phys A Mater Sci Proc 37:191–203

    Google Scholar 

  • Xu PP, Huang QS, Shi YC (2013) Silicon hybrid plasmonic Bragg grating reflectors and high Q-factor micro-cavities. Opt Commun 289:81–84

    CAS  Google Scholar 

  • Yang XD, Ishikawa A, Yin XB, Zhang X (2011) Hybrid photonic-plasmonic crystal nanocavities. ACS Nano 5:2831–2838

    CAS  Google Scholar 

  • Yudistira D, Pennec Y, Rouhani BD, Dupont S, Laude V (2012) Non-radiative complete surface acoustic wave bandgap for finite-depth holey phononic crystal in lithium niobate. Appl Phys Lett 100:061912

    Google Scholar 

  • Zheng JJ, Li Y, Aras MS, Stein A, Shepard KL, Wong CW (2012) Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities. Appl Phys Lett 100:211908

    Google Scholar 

  • Zhou YJ, Xiao QX, Yang BJ (2015) Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances. Sci Rep 5:14819

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 61275043, 61605128), Natural Science Foundation of Guangdong Province (Grant No. 2017A030310455), Shenzhen Science & Technology Foundation (Grant No. JCYJ20180305124247521) and Start-up Funds for New Teachers of Shenzhen University (Grant No. 2016024). The authors would also like to thank Mr. Chi Zhang who assisted in editing the revised manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Liu, Sacharia Albin or Zhengbiao Ouyang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Lu, H., Bibbó, L. et al. Hybrid plasmonic–phononic cavity design for enhanced optomechanical coupling in lithium niobate. Appl Nanosci 10, 1395–1407 (2020). https://doi.org/10.1007/s13204-020-01371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01371-5

Keywords

Navigation