Skip to main content
Log in

Effect of temperature and pH on the early stages of interaction of compatible partners of the lichen Cladonia rangiferina (Cladoniaceae)

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Reindeer lichens (such as Cladonia rangiferina) are important winter forage for caribou and reindeer and are widely distributed in northern ecosystems. Widespread lichen communities may be explained by dispersal from thallus fragments or by fungal ascospores interacting with algal cells. Since three early stages of interactions between symbionts of the lichen C. rangiferina have already been established, this study investigated the effect of three temperatures (5, 20, and 35 °C) and pH levels (4.5, 6.5, and 8.5) on the early interaction of C. rangiferina by quantifying morphological differences for three fungal (internode length, number of lateral branches, number of appressoria) and one algal (cell diameter) characters using Scanning Electron Microscopy. The results showed that the fungal characters were significantly altered by the extreme temperatures (5 and 35 °C) and the pH level produced differences in the fungal characters at pH 8.5. The alga was more tolerant of the wide temperature range than the fungus while the fungus was more tolerant of pH changes than the alga. An interaction effect by temperature and pH on the symbiont characters was also observed. The study raises questions regarding the range of conditions tolerated by other species of lichens and their symbionts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams MS (1971) Temperature response of carbon dioxide exchange of Cladonia rangiferina from the Wisconsin pine barrens, and comparison with an Alpine population. Am Midl Nat 86:224–227

    Article  CAS  Google Scholar 

  • Ahmadjian V (1987) Coevolution in lichens. Ann N Y Acad Sci 503:307–315

    Article  Google Scholar 

  • Ahmadjian V (1993) The lichen symbiosis. Nord J Bot 14(5):588

    Google Scholar 

  • Ahmadjian V, Russell LA, Hildreth KC (1980) Artificial reestablishment of lichens. I. Morphological interactions between the phycobionts of different lichens and the mycobionts Cladonia cristatella and Lecanora chrysoleuca. Mycologia 72:73–89

    Article  Google Scholar 

  • Athukorala SNP, Piercey-Normore MD (2014) Recognition- and defenserelated gene expression at 3 resynthesis stages in lichen symbionts. Can J Microbiol. doi:10.1139/cjm-2014-0470

  • Athukorala SNP, Huebner E, Piercey-Normore MD (2014) Identification and comparison of the 3 early stages of resynthesis for the lichen Cladonia rangiferina. Can J Microbiol 60:41–52

    Article  CAS  PubMed  Google Scholar 

  • Bačkor M, Hudák J, Repčák M, Ziegler W, Bačkorová M (1998) The influence of pH and lichen metabolites (vulpinic acid and (+) usinic acid) on the growth of the lichen photobiont Trebouxia irregularis. Lichenologist 30:577–582

    Google Scholar 

  • Bliss LC, Hadley EB (1964) Photosynthesis and respiration of alpine lichens. Am J Bot 51:870–874

    Article  Google Scholar 

  • Bornside GH, Cleverdon RC, Kulp WL (1952) Effect of ultraviolet radiation on production of urease by Proteus vulgaris and Proteus mirabilis. J Bacteriol 64:63–68

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4:277–287

    Article  Google Scholar 

  • Bubrick P, Frensdorff A, Galun M (1985) Selectivity in the lichen symbiosis. In: Brown DH (ed) Lichen physiology and cell biology. Plenum, New York, pp 319–334

    Chapter  Google Scholar 

  • Casano LM, del Campo EM, Garcia-Breijo FJ, Reig-Armiῆana J, Gasulla F, Del Hoyo A, Guera A, Barreno E (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13:806–818

    Article  CAS  PubMed  Google Scholar 

  • Cushman JH, Addicott JF (1991) Conditional interactions in ant-plant-herbivore mutualisms. In: Huxley CR, Cutler DF (eds) Ant-plant interactions. Oxford University Press, Oxford, pp 92–103

    Google Scholar 

  • Cushman JH, Whitham TG (1989) Conditional mutualism in a membracid-ant association: temporal, age-specific, and density dependent effects. Ecology 70:1040–1047

    Article  Google Scholar 

  • Erisir M, Erce E, Yilmaz S, Ozan S (2005) Evaluation of optimal conditions for arginase activity in streptozotocin induced diabetic rats. Vet Med Czech 50:69–76

    CAS  Google Scholar 

  • Ewald PW (2004) Evolution of virulence. Infect Dis Clin North Am 18:1–15

    Article  PubMed  Google Scholar 

  • Galun M, Garty J (1988) Soredia formation of compatible and incompatible lichen symbionts. In: Cannerini SS, Bonfante-Fasolo P, Gianinazzi-Pearson V (eds) Cell to cell signals in plant, animals and microbial symbiosis, vol H17. Springer, Berlin, pp 207–217

    Chapter  Google Scholar 

  • Gargas A, DePriest PT, Grube M, Tehler A (1995) Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268:1492–1495

    Article  CAS  PubMed  Google Scholar 

  • Grant AJ, ReÂmond M, People J, Hinde R (1997) Effects of host-tissue homogenate of the scleractinian coral Plesiastrea versipora on glycerol metabolism in isolated symbiotic dinoflagellates. Mar Biol 128:665–670

    Article  CAS  Google Scholar 

  • Grant A, People J, Rémond M, Franklan S, Hinde R (2013) How a host cell signalling molecule modifies carbon metabolism in symbionts of the coral Plesiastrea versipora. FEBS J 280:2085–2096

    Article  CAS  PubMed  Google Scholar 

  • Hájek J, Barták M, Dubová J (2006) Inhibition of photosynthetic processes in foliose lichens induced by temperature and osmotic stress. Biol Plantarium 50:624–634

    Article  Google Scholar 

  • Hallingbäck T, Kellner O (1992) Effects of simulated nitrogen rich and acid rain on the nitrogen-fixing lichen Peltigera aphthosa (L.) Willd. New Phytol 120:99–103

    Article  Google Scholar 

  • Harrison PM, Walton DWH, Rothery P (1986) The effects of temperature and moisture on dark respiration on the foliose lichen Umbilicaria Antarctica. New Phytol 103:443–455

    Article  Google Scholar 

  • Honegger R, Peter M, Seherrer S (1996) Drought-induced structural alterations at the mycobiont-photobiont interface in a range of foliose macrolichens. Protoplasma 190:221–232

    Article  Google Scholar 

  • Jahns HM (1993) Culture experiments with lichens. Plant System Evol 187:145–174

    Article  Google Scholar 

  • Joneson S, Lutzoni F (2009) Compatibility and thigmotropism in the lichen symbiosis: a reappraisal. Symbiosis 47:109–115

    Article  Google Scholar 

  • Kon Y, Kashiwadani H, Masada M, Tamura G (1993) Artificial syntheses of mycobionts of Usnea confusa ssp. kitamiensis and Usnea orientalis with their natural and nonnatural phycobiont. J Jpn Bot 68:129–137

    Google Scholar 

  • Kong F, Hu W, Sang W, Wang L (2002) Effects of sulphur dioxide on the relationship between symbionts in lichen. J Appl Ecol 13:151–155

    CAS  Google Scholar 

  • Lallemant R, Bernard T (1977) Obtention de cultures pure des mycosymbiotes du Lobaria laetevirens (Light.) Zahlbr.et du Lobaria pulmonaria (L.) Hoffm.: le role des gonides. Rev Bryol Lichenol 43:303–308

    Google Scholar 

  • Marmor L, Randlane T (2007) Effects of road traffic on bark pH and epiphytic lichens in Tallinn. Folia Cryotog Estonica Fasc 43:13–27

    Google Scholar 

  • Meeßen J, Ott S (2013) Recognition mechanisms during the pre-contact state of lichens: I. Mycobiont-photobiont interactions of the mycobiont of Fulgensia bracteata. Symbiosis 59:121–130

    Article  Google Scholar 

  • Meeßen J, Eppenstein S, Ott S (2013) Recognition mechanisms during the precontact state of lichens: II. Influence of algal exudates and ribitol on the response of the mycobiont of Fulgensia bracteata. Symbiosis 59:131–143

    Article  Google Scholar 

  • Muggia L, Baloch E, Stabentheiner E, Grube M, Wedin M (2011) Photobiont association and genetic diversity of the optionally lichenized fungus Schizoxylon albescens. FEMS Microbiol Ecol 75:255–272

    Article  CAS  PubMed  Google Scholar 

  • Ott S (1987) Sexual reproduction and developmental adaptations in Xanthoria parietina. Nordic J Bot 7:219–228

    Article  Google Scholar 

  • Öztürk S, Oran S (2011) Investigations on the bark pH and epiphytic lichen diversity of Quercus taxa found in Marmara Region. J App Biol Sci 5:27–33

    Google Scholar 

  • Paustian K, Schnürer J (1987a) Fungal growth response to carbon and nitrogen limitation. A theoretical model. Soil Biol Biochem 19:613–620

    Article  CAS  Google Scholar 

  • Paustian K, Schnürer J (1987b) Fungal growth response to carbon and nitrogen limitation. Application of a model to laboratory and field data. Soil Biol Biochem 19:621–629

    Article  CAS  Google Scholar 

  • Pisani T, Paoli L, Gaggi C, Pirintsos SA, Loppi S (2007) Effects of high temperature on epiphytic lichens: issues for consideration in a changing climate scenario. Plant Biosyst 141:164–169

    Article  Google Scholar 

  • Sachs JL, Simms EL (2006) Pathways to mutualism breakdown. Trends Ecol Evol 21:585–592

    Article  PubMed  Google Scholar 

  • Schaper T, Ott S (2003) Photobiont selectivity and interspecific interactions in lichen communities. Culture Experiments with the mycobiont Fulgensia bracteata. Plant Biol 5:1–10

    Article  Google Scholar 

  • St John TV, Coleman DC, Reid CCP (1983) Growth and spatial distribution of nutrient-absorbing organs: selective exploitation of soil heterogeneity. Plant Soil 71:487–493

    Article  Google Scholar 

  • Stocker-Wörgötter E (1995) Experimental cultivation of lichens and lichen symbionts. Can J Bot 73S:579–589

    Article  Google Scholar 

  • Stocker-Wörgötter E, Turk R (1991) Artificial resynthesis of thalli of the cyanobacterial lichen Peltigera praetextata under laboratory conditions. Lichenologist 23:127–138

    Article  Google Scholar 

  • Sutton DC, Hoegh-Guldberg O (1990) Host-zooxanthella interaction in four temperate marine invertebrate symbioses: assessment of effect of host extracts on symbionts. Biol Bull 178:175–186

    Article  Google Scholar 

  • Thomas MB, Blanford S (2003) Thermal biology in insect-parasite interactions. Trends Ecol Evol 18:344–350

    Article  Google Scholar 

  • Thompson JN (1988) Coevolution and alternative hypotheses on insect/plant interactions. Ecology 69:893–895

    Article  Google Scholar 

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Thrall PH, Hochberg ME, Burdon JJ, Bever JD (2006) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22:120–126

    Article  PubMed  Google Scholar 

  • Upchurch RG, Ramirez ME (2011) Effects of temperature during soybean seed development on defense-related gene expression and fungal pathogen accumulation. Biotechnol Lett 33:2397–2404

    Article  CAS  PubMed  Google Scholar 

  • Wolinska J, King KC (2009) Environment can alter selection in host-parasite interactions. Trends Parasitol 25:236–244

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank E. Huebner (University of Manitoba) for assistant in modifications to sample processing for SEM; A. Dufresne (University of Manitoba) for the technical support in SEM processing and imaging facility; the Natural Science and Engineering Research Council (NSERC) for a Canada Graduate Scholarship to SA and Discovery Grant to MPN, and the Faculty of Science and the Department of Biological Sciences for scholarship funding to SA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarangi N. P. Athukorala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athukorala, S.N.P., Piercey-Normore, M.D. Effect of temperature and pH on the early stages of interaction of compatible partners of the lichen Cladonia rangiferina (Cladoniaceae). Symbiosis 64, 87–93 (2014). https://doi.org/10.1007/s13199-014-0307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-014-0307-x

Keywords

Navigation