Skip to main content

Advertisement

Log in

A Neurovascular Perspective for Long-Term Changes After Brain Trauma

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) affects all age groups in a population and is an injury generating scientific interest not only as an acute event, but also as a complex brain disease with several underlying neurobehavioral and neuropathological characteristics. We review early and long-term alterations after juvenile and adult TBI with a focus on changes in the neurovascular unit, including neuronal interactions with glia and blood vessels at the blood–brain barrier (BBB). Post-traumatic changes in cerebral blood flow, BBB structures and function, as well as mechanistic pathways associated with brain aging and neurodegeneration are presented from clinical and experimental reports. Based on the literature, increased attention on BBB changes should be integrated in studies characterizing TBI outcome and may provide a meaningful therapeutic target to resolve detrimental post-traumatic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wade SL, Michaud L, Brown TM. Putting the pieces together: preliminary efficacy of a family problem-solving intervention for children with traumatic brain injury. J Head Trauma Rehab. 2006;21(1):57–67.

    Google Scholar 

  2. Brancu M, Straits-Troster K, Kudler H. Behavioral health conditions among military personnel and veterans: prevalence and best practices for treatment. N C Med J. 2011;72(1):54–60.

    PubMed  Google Scholar 

  3. Faul M et al. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths, 2002–2006. Atlanta: CDC; 2010.

    Google Scholar 

  4. Zaloshnja E et al. Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J Head Trauma Rehab. 2008;23(6):394–400.

    Google Scholar 

  5. Selassie AW et al. Incidence of long-term disability following traumatic brain injury hospitalization, United States, 2003. J Head Trauma Rehab. 2008;23(2):123–31.

    Google Scholar 

  6. Thurman D, Guerrero J. Trends in hospitalization associated with traumatic brain injury. JAMA. 1999;282(10):954–7.

    PubMed  CAS  Google Scholar 

  7. Thurman DJ et al. Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehab. 1999;14(6):602–15.

    CAS  Google Scholar 

  8. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehab. 2006;21(5):375–8.

    Google Scholar 

  9. Coronado VG et al. Surveillance for traumatic brain injury-related deaths—United States, 1997–2007. MMWR Surveill Summ. 2011;60(5):1–32.

    PubMed  Google Scholar 

  10. Finkelstein E et al. The incidence and economic burden of injuries in the United States. New York: Oxford University Press; 2006.

    Google Scholar 

  11. Vakili A, Kataoka H, Plesnila N. Role of arginine vasopressin V1 and V2 receptors for brain damage after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2005;25(8):1012–9.

    PubMed  CAS  Google Scholar 

  12. Trabold R et al. Role of vasopressin V(1a) and V2 receptors for the development of secondary brain damage after traumatic brain injury in mice. J Neurotraum. 2008;25(12):1459–65.

    Google Scholar 

  13. Smith DH et al. Protein accumulation in traumatic brain injury. Neuromol Med. 2003;4(1–2):59–72.

    CAS  Google Scholar 

  14. Gavett BE et al. Mild traumatic brain injury: a risk factor for neurodegeneration. Alzheimers Res Ther. 2010;2(3):18.

    PubMed  Google Scholar 

  15. Johnson VE, Stewart W, Smith DH. Traumatic brain injury and amyloid-beta pathology: a link to Alzheimer’s disease? Nat Rev Neurosci. 2010;11(5):361–70.

    PubMed  CAS  Google Scholar 

  16. Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–41.

    PubMed  Google Scholar 

  17. Malec JF et al. The mayo classification system for traumatic brain injury severity. J Neurotraum. 2007;24(9):1417–24.

    Google Scholar 

  18. Ponsford J et al. Cognitive and behavioral outcome following mild traumatic head injury in children. J Head Trauma Rehab. 1999;14(4):360–72.

    CAS  Google Scholar 

  19. Ponsford J et al. Impact of early intervention on outcome after mild traumatic brain injury in children. Pediatrics. 2001;108(6):1297–303.

    PubMed  CAS  Google Scholar 

  20. Ponsford J et al. Long-term outcomes after uncomplicated mild traumatic brain injury: a comparison with trauma controls. J Neurotraum. 2011;28(6):937–46.

    Google Scholar 

  21. Lippert-Gruner M et al. Neurobehavioural deficits after severe traumatic brain injury (TBI). Brain Inj. 2006;20(6):569–74.

    PubMed  Google Scholar 

  22. Kuppermann N et al. Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. Lancet. 2009;374(9696):1160–70.

    PubMed  Google Scholar 

  23. Schneier AJ et al. Incidence of pediatric traumatic brain injury and associated hospital resource utilization in the United States. Pediatrics. 2006;118(2):483–92.

    PubMed  Google Scholar 

  24. Brown AW et al. Long-term survival after traumatic brain injury: a population-based analysis. NeuroRehabilitation. 2004;19(1):37–43.

    PubMed  Google Scholar 

  25. Harrison-Felix C et al. Mortality following rehabilitation in the traumatic brain injury model systems of care. NeuroRehabilitation. 2004;19(1):45–54.

    PubMed  Google Scholar 

  26. Himanen L et al. Risk factors for reduced survival after traumatic brain injury: a 30-year follow-up study. Brain Inj. 2011;25(5):443–52.

    PubMed  Google Scholar 

  27. Anderson V et al. Educational, vocational, psychosocial, and quality-of-life outcomes for adult survivors of childhood traumatic brain injury. J Head Trauma Rehab. 2009;24(5):303–12.

    Google Scholar 

  28. Anderson V et al. Intellectual outcome from preschool traumatic brain injury: a 5-year prospective, longitudinal study. Pediatrics. 2009;124(6):e1064–71.

    PubMed  Google Scholar 

  29. Babikian T, Asarnow R. Neurocognitive outcomes and recovery after pediatric TBI: meta-analytic review of the literature. Neuropsychology. 2009;23(3):283–96.

    Google Scholar 

  30. Babikian T et al. The UCLA longitudinal study of neurocognitive outcomes following mild pediatric traumatic brain injury. J Int Neuropsychol Soc. 2011;17:886–95.

    PubMed  Google Scholar 

  31. Levin HS et al. Magnetic resonance imaging and computerized tomography in relation to the neurobehavioral sequelae of mild and moderate head injuries. J Neurosurg. 1987;66(5):706–13.

    PubMed  CAS  Google Scholar 

  32. Fujii D, Ahmed I. Psychotic disorder following traumatic brain injury: a conceptual framework. Cogn Neuropsychiatry. 2002;7(1):41–62.

    PubMed  Google Scholar 

  33. Giza CC. Lasting effects of pediatric traumatic brain injury. Indian J Neurotraum. 2006;3(1):19–26.

    Google Scholar 

  34. Satz P. Brain reserve capacity on symptom onset after brain injury: a formulation and review of evidence for threshold theory. Neuropsychology. 1993;7(3):273–95.

    Google Scholar 

  35. Ikonomovic MD et al. Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol. 2004;190(1):192–203.

    PubMed  CAS  Google Scholar 

  36. DeKosky ST et al. Association of increased cortical soluble abeta42 levels with diffuse plaques after severe brain injury in humans. Arch Neurol. 2007;64(4):541–4.

    PubMed  Google Scholar 

  37. Levine B et al. The Toronto traumatic brain injury study: injury severity and quantified MRI. Neurology. 2008;70(10):771–8.

    PubMed  CAS  Google Scholar 

  38. McKee AC et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. 2009;68(7):709–35.

    PubMed  Google Scholar 

  39. Baethmann A et al. Mediators of brain edema and secondary brain damage. Crit Care Med. 1988;16(10):972–8.

    PubMed  CAS  Google Scholar 

  40. Sahuquillo J, Poca MA, Amoros S. Current aspects of pathophysiology and cell dysfunction after severe head injury. Curr Pharm Des. 2001;7(15):1475–503.

    PubMed  CAS  Google Scholar 

  41. Gaetz M. The neurophysiology of brain injury. Clin Neurophysiol. 2004;115(1):4–18.

    PubMed  CAS  Google Scholar 

  42. Zweckberger K et al. Effect of early and delayed decompressive craniectomy on secondary brain damage after controlled cortical impact in mice. J Neurotraum. 2006;23(7):1083–93.

    Google Scholar 

  43. Bell RD, Zlokovic BV. Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol. 2009;118(1):103–13.

    PubMed  CAS  Google Scholar 

  44. Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10(11):1369–76.

    PubMed  CAS  Google Scholar 

  45. Neuwelt EA et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci. 2011;12(3):169–82.

    PubMed  CAS  Google Scholar 

  46. Engelhardt B, Coisne C. Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS. 2011;8(1):4.

    PubMed  Google Scholar 

  47. Saunders NR, Knott GW, Dziegielewska KM. Barriers in the immature brain. Cell Mol Neurobiol. 2000;20(1):29–40.

    PubMed  CAS  Google Scholar 

  48. Saunders NR et al. Barriers in the brain: a renaissance? Trends Neurosci. 2008;31(6):279–86.

    PubMed  CAS  Google Scholar 

  49. Abbott NJ, Ronnback L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.

    PubMed  CAS  Google Scholar 

  50. Abbott NJ et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.

    PubMed  CAS  Google Scholar 

  51. Owens T, Bechmann I, Engelhardt B. Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol. 2008;67(12):1113–21.

    PubMed  Google Scholar 

  52. Tam SJ, Watts RJ. Connecting vascular and nervous system development: angiogenesis and the blood–brain barrier. Annu Rev Neurosci. 2010;33:379–408.

    PubMed  CAS  Google Scholar 

  53. Daneman R et al. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6.

    PubMed  CAS  Google Scholar 

  54. Armulik A et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468(7323):557–61.

    PubMed  CAS  Google Scholar 

  55. Bushong EA, Martone ME, Ellisman MH. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci. 2004;22(2):73–86.

    PubMed  Google Scholar 

  56. Silverberg GD et al. Amyloid efflux transporter expression at the blood–brain barrier declines in normal aging. J Neuropathol Exp Neurol. 2010;69(10):1034–43.

    PubMed  CAS  Google Scholar 

  57. Silverberg GD et al. Amyloid and tau accumulate in the brains of aged hydrocephalic rats. Brain Res. 2010;1317:286–96.

    PubMed  CAS  Google Scholar 

  58. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99(1):4–9.

    PubMed  CAS  Google Scholar 

  59. Bouma GJ et al. Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg. 1991;75(5):685–93.

    PubMed  CAS  Google Scholar 

  60. Bryan Jr RM, Cherian L, Robertson C. Regional cerebral blood flow after controlled cortical impact injury in rats. Anesth Analg. 1995;80(4):687–95.

    PubMed  Google Scholar 

  61. Engel DC et al. Changes of cerebral blood flow during the secondary expansion of a cortical contusion assessed by 14C-iodoantipyrine autoradiography in mice using a non-invasive protocol. J Neurotraum. 2008;25(7):739–53.

    Google Scholar 

  62. Kochanek PM et al. Severe controlled cortical impact in rats: assessment of cerebral edema, blood flow, and contusion volume. J Neurotraum. 1995;12(6):1015–25.

    CAS  Google Scholar 

  63. Schroder ML et al. Focal ischemia due to traumatic contusions documented by stable xenon-CT and ultrastructural studies. J Neurosurg. 1995;82(6):966–71.

    PubMed  CAS  Google Scholar 

  64. Sahuquillo J et al. Evaluation of cerebrovascular CO2-reactivity and autoregulation in patients with post-traumatic diffuse brain swelling (diffuse injury III). Act Neur S. 1998;71:233–6.

    CAS  Google Scholar 

  65. Vavilala MS et al. Impaired cerebral autoregulation and 6-month outcome in children with severe traumatic brain injury: preliminary findings. Dev Neurosci. 2006;28(4–5):348–53.

    PubMed  CAS  Google Scholar 

  66. Muizelaar JP et al. Cerebral blood flow and metabolism in severely head-injured children. Part 1: relationship with GCS score, outcome, ICP, and PVI. J Neurosurg. 1989;71(1):63–71.

    PubMed  CAS  Google Scholar 

  67. Muizelaar JP et al. Cerebral blood flow and metabolism in severely head-injured children. Part 2: autoregulation. J Neurosurg. 1989;71(1):72–6.

    PubMed  CAS  Google Scholar 

  68. Freeman SS et al. Young age as a risk factor for impaired cerebral autoregulation after moderate to severe pediatric traumatic brain injury. Anesthesiology. 2008;108(4):588–95.

    PubMed  Google Scholar 

  69. Sharples PM, Matthews DS, Eyre JA. Cerebral blood flow and metabolism in children with severe head injuries. Part 2: cerebrovascular resistance and its determinants. J Neurol Neurosurg Psychiatry. 1995;58(2):153–9.

    PubMed  CAS  Google Scholar 

  70. Sharples PM et al. Cerebral blood flow and metabolism in children with severe head injury. Part 1: relation to age, Glasgow coma score, outcome, intracranial pressure, and time after injury. J Neurol Neurosurg Psychiatry. 1995;58(2):145–52.

    PubMed  CAS  Google Scholar 

  71. Armstead WM. Cerebral hemodynamics after traumatic brain injury of immature brain. Exp Toxicol Pathol. 1999;51(2):137–42.

    PubMed  CAS  Google Scholar 

  72. Armstead WM. Role of endothelin-1 in age-dependent cerebrovascular hypotensive responses after brain injury. Am J Physiol. 1999;277(5 Pt 2):H1884–94.

    PubMed  CAS  Google Scholar 

  73. Armstead WM. Age-dependent impairment of K(ATP) channel function following brain injury. J Neurotraum. 1999;16(5):391–402.

    CAS  Google Scholar 

  74. Armstead WM. Stimulus duration modulates the interaction between opioids and nitric oxide in hypoxic pial artery dilation. Brain Res. 1999;825(1–2):68–74.

    PubMed  CAS  Google Scholar 

  75. Armstead WM. Superoxide generation links protein kinase C activation to impaired ATP-sensitive K+ channel function after brain injury. Stroke. 1999;30(1):153–9.

    PubMed  CAS  Google Scholar 

  76. Hamel E. Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol. 2006;100(3):1059–64.

    PubMed  Google Scholar 

  77. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):373–6.

    PubMed  CAS  Google Scholar 

  78. Wada K et al. Role of nitric oxide in traumatic brain injury in the rat. J Neurosurg. 1998;89(5):807–18.

    PubMed  CAS  Google Scholar 

  79. Cherian L, Hlatky R, Robertson CS. Nitric oxide in traumatic brain injury. Brain Pathol. 2004;14(2):195–201.

    PubMed  CAS  Google Scholar 

  80. Armstead WM et al. Glucagon protects against impaired NMDA-mediated cerebrovasodilation and cerebral autoregulation during hypotension after brain injury by activating cAMP protein kinase A and inhibiting upregulation of tPA. J Neurotraum. 2011;28(3):451–7.

    Google Scholar 

  81. Cherian L, Robertson CS. l-arginine and free radical scavengers increase cerebral blood flow and brain tissue nitric oxide concentrations after controlled cortical impact injury in rats. J Neurotraum. 2003;20(1):77–85.

    Google Scholar 

  82. Orihara Y et al. Induction of nitric oxide synthase by traumatic brain injury. Forensic Sci Int. 2001;123(2–3):142–9.

    PubMed  CAS  Google Scholar 

  83. Steiner J et al. Attenuation of iNOS mRNA exacerbates hypoperfusion and upregulates endothelin-1 expression in hippocampus and cortex after brain trauma. Nato Sci S A Lif Sci. 2004;10(3):162–9.

    CAS  Google Scholar 

  84. Xia Y, Zweier JL. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci USA. 1997;94(13):6954–8.

    PubMed  CAS  Google Scholar 

  85. Xia Y et al. Inducible nitric-oxide synthase generates superoxide from the reductase domain. J Biol Chem. 1998;273(35):22635–9.

    PubMed  CAS  Google Scholar 

  86. Guix FX et al. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol. 2005;76(2):126–52.

    PubMed  CAS  Google Scholar 

  87. Armstead WM et al. Phenylephrine infusion prevents impairment of ATP- and calcium-sensitive potassium channel-mediated cerebrovasodilation after brain injury in female, but aggravates impairment in male, piglets through modulation of ERK MAPK upregulation. J Neurotraum. 2011;28(1):105–11.

    Google Scholar 

  88. Plesnila N et al. Relative cerebral blood flow during the secondary expansion of a cortical lesion in rats. Neurosci Lett. 2003;345(2):85–8.

    PubMed  CAS  Google Scholar 

  89. Ashwal S et al. Predictive value of proton magnetic resonance spectroscopy in pediatric closed head injury. Pediatr Neurol. 2000;23(2):114–25.

    PubMed  CAS  Google Scholar 

  90. Bartnik BL, Spigelman I, Obenaus A. Cell-permeant calcium buffer induced neuroprotection after cortical devascularization. Exp Neurol. 2005;192(2):357–64.

    PubMed  CAS  Google Scholar 

  91. Bartnik BL et al. Upregulation of pentose phosphate pathway and preservation of tricarboxylic acid cycle flux after experimental brain injury. J Neurotraum. 2005;22(10):1052–65.

    Google Scholar 

  92. Casey PA et al. Early and sustained alterations in cerebral metabolism after traumatic brain injury in immature rats. J Neurotraum. 2008;25(6):603–14.

    Google Scholar 

  93. Ashwal S et al. Proton spectroscopy detected myoinositol in children with traumatic brain injury. Pediatr Res. 2004;56(4):630–8.

    PubMed  CAS  Google Scholar 

  94. Rhodes J. Peripheral immune cells in the pathology of traumatic brain injury? Curr Opin Crit Care. 2011;17(2):122–30.

    PubMed  Google Scholar 

  95. Badaut J, Ashwal S, Obenaus A. Aquaporins in cerebrovascular disease: a target for treatment of brain edema? Cerebrovasc Dis. 2011;31(6):521–31.

    PubMed  CAS  Google Scholar 

  96. Unterberg AW et al. Edema and brain trauma. Neuroscience. 2004;129(4):1021–9.

    PubMed  CAS  Google Scholar 

  97. Klatzo I. Brain oedema following brain ischaemia and the influence of therapy. Br J Anaesth. 1985;57(1):18–22.

    PubMed  CAS  Google Scholar 

  98. Pappius HM. Part I: tumors of the brain and skull. In: Vinken PJ, Bruyn GW, editors. Handbook of clinical neurology. New York: North Holland Publishing Company; 1974. p. 167–85.

    Google Scholar 

  99. Bauer R, Fritz H. Pathophysiology of traumatic injury in the developing brain: an introduction and short update. Exp Toxicol Pathol. 2004;56(1–2):65–73.

    PubMed  Google Scholar 

  100. Lang DA et al. Diffuse brain swelling after head injury: more often malignant in adults than children? J Neurosurg. 1994;80(4):675–80.

    PubMed  CAS  Google Scholar 

  101. Kochanek PM. Pediatric traumatic brain injury: quo vadis? Dev Neurosci. 2006;28(4–5):244–55.

    PubMed  CAS  Google Scholar 

  102. Wen H et al. Ontogeny of water transport in rat brain: postnatal expression of the aquaporin-4 water channel. Eur J Neurosci. 1999;11(3):935–45.

    PubMed  CAS  Google Scholar 

  103. Dobbing J. The later development of the brain and its vulnerability. In: Davis JA, Dobbing J, editors. Scientific foundations of paediatrics. London: Heinemann; 1981. p. 744–59.

    Google Scholar 

  104. Badaut J, Regli L. Distribution and possible roles of aquaporin 9 in the brain. Neuroscience. 2004;129(4):971–81.

    PubMed  CAS  Google Scholar 

  105. Badaut J et al. Aquaporin 1 and aquaporin 4 expression in human brain after subarachnoid hemorrhage and in peritumoral tissue. Act Neur S. 2003;86:495–8.

    CAS  Google Scholar 

  106. Badaut J et al. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002;22(4):367–78.

    PubMed  CAS  Google Scholar 

  107. de Castro Ribeiro M et al. Thrombin in ischemic neuronal death. Exp Neurol. 2006;198(1):199–203.

    PubMed  Google Scholar 

  108. Badaut J. Aquaglyceroporin 9 in brain pathologies. Neuroscience. 2010;168(4):1047–57.

    PubMed  CAS  Google Scholar 

  109. Neuwelt E et al. Strategies to advance translational research into brain barriers. Lancet Neurol. 2008;7(1):84–96.

    PubMed  CAS  Google Scholar 

  110. Ke C et al. Heterogeneous responses of aquaporin-4 in oedema formation in a replicated severe traumatic brain injury model in rats. Neurosci Lett. 2001;301(1):21–4.

    PubMed  CAS  Google Scholar 

  111. Kiening KL et al. Decreased hemispheric aquaporin-4 is linked to evolving brain edema following controlled cortical impact injury in rats. Neurosci Lett. 2002;324(2):105–8.

    PubMed  CAS  Google Scholar 

  112. Sun MC et al. Regulation of aquaporin-4 in a traumatic brain injury model in rats. J Neurosurg. 2003;98(3):565–9.

    PubMed  CAS  Google Scholar 

  113. Meng S et al. Correspondence of AQP4 expression and hypoxic-ischaemic brain oedema monitored by magnetic resonance imaging in the immature and juvenile rat. Eur J Neurosci. 2004;19(8):2261–9.

    PubMed  Google Scholar 

  114. Taniguchi M et al. Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Brain Res Mol Brain Res. 2000;78(1–2):131–7.

    PubMed  CAS  Google Scholar 

  115. Ke C et al. Impact of experimental acute hyponatremia on severe traumatic brain injury in rats: influences on injuries, permeability of blood–brain barrier, ultrastructural features, and aquaporin-4 expression. Exp Neurol. 2002;178(2):194–206.

    PubMed  CAS  Google Scholar 

  116. Saadoun S et al. Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice. Brain. 2008;131(Pt 4):1087–98.

    PubMed  Google Scholar 

  117. Kimura A et al. Protective role of aquaporin-4 water channels after contusion spinal cord injury. Ann Neurol. 2010;67(6):794–801.

    PubMed  Google Scholar 

  118. Zhao J et al. Sulforaphane enhances aquaporin-4 expression and decreases cerebral edema following traumatic brain injury. J Neurosci Res. 2005;82(4):499–506.

    PubMed  CAS  Google Scholar 

  119. Guo Q et al. Progesterone administration modulates AQP4 expression and edema after traumatic brain injury in male rats. Exp Neurol. 2006;198(2):469–78.

    PubMed  CAS  Google Scholar 

  120. Badaut J et al. Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference. J Cereb Blood Flow Metab. 2011;31(3):819–31.

    PubMed  CAS  Google Scholar 

  121. Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010 6(7):393–403. Epub 2010 Jun 15.

    Google Scholar 

  122. Beaumont A et al. Bolus tracer delivery measured by MRI confirms edema without blood–brain barrier permeability in diffuse traumatic brain injury. Act Neur S. 2006;96:171–4.

    CAS  Google Scholar 

  123. Strbian D et al. The blood–brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience. 2008;153(1):175–81.

    PubMed  CAS  Google Scholar 

  124. Nag S, Venugopalan R, Stewart DJ. Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood–brain barrier breakdown. Acta Neuropathol. 2007;114(5):459–69.

    PubMed  CAS  Google Scholar 

  125. Jiao H et al. Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood–brain barrier in a focal cerebral ischemic insult. J Mol Neurosci. 2011;44(2):130–9.

    PubMed  CAS  Google Scholar 

  126. Abdul Muneer PM. Inhibitory effects of alcohol on glucose transport across the blood–brain barrier leads to neurodegeneration: preventive role of acetyl-L: -carnitine. Psychopharmacology (Berl). 2011;214(3):707–18.

    CAS  Google Scholar 

  127. Lin JL et al. Ascorbic acid prevents blood–brain barrier disruption and sensory deficit caused by sustained compression of primary somatosensory cortex. J Cereb Blood Flow Metab. 2010;30(6):1121–36.

    PubMed  CAS  Google Scholar 

  128. Liao CW et al. Blood–brain barrier impairment with enhanced SP, NK-1R, GFAP and claudin-5 expressions in experimental cerebral toxocariasis. Parasite Immunol. 2008;30(10):525–34.

    PubMed  CAS  Google Scholar 

  129. Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem. 2005;94(1):1–14.

    PubMed  CAS  Google Scholar 

  130. Prins ML, Giza CC. Induction of monocarboxylate transporter 2 expression and ketone transport following traumatic brain injury in juvenile and adult rats. Dev Neurosci. 2006;28(4–5):447–56.

    PubMed  CAS  Google Scholar 

  131. Appelberg KS, Hovda DA, Prins ML. The effects of a ketogenic diet on behavioral outcome after controlled cortical impact injury in the juvenile and adult rat. J Neurotraum. 2009;26(4):497–506.

    Google Scholar 

  132. Deane R, Wu Z, Zlokovic BV. RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid beta-peptide clearance through transport across the blood–brain barrier. Stroke. 2004;35(11 Suppl 1):2628–31.

    PubMed  CAS  Google Scholar 

  133. Miller DS. Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends Pharmacol Sci. 2010;31(6):246–54.

    PubMed  CAS  Google Scholar 

  134. Zlokovic BV et al. Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer’s amyloid beta-peptide elimination from the brain. J Neurochem. 2010;115(5):1077–89.

    PubMed  CAS  Google Scholar 

  135. Pop, V., et al. Long-term alterations in the blood–brain barrier, cognitive impairment, and development of Alzheimer-type neuropathology after juvenile traumatic brain injury. XXVth International Symposium on Cerebral Blood Flow and Metabolism, Barcelona, Spain, JCBFM; 2011.

  136. Wu B et al. Age-related changes in P-glycoprotein expression in senescence-accelerated mouse. Curr Aging Sci. 2009;2(3):187–92.

    PubMed  CAS  Google Scholar 

  137. Wu B et al. RAGE, LDL receptor, and LRP1 expression in the brains of SAMP8. Neurosci Lett. 2009;461(2):100–5.

    PubMed  CAS  Google Scholar 

  138. Cirrito JR et al. P-glycoprotein deficiency at the blood–brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest. 2005;115(11):3285–90.

    PubMed  CAS  Google Scholar 

  139. Mawuenyega KG et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 2010;330(6012):1774.

    PubMed  CAS  Google Scholar 

  140. Magnoni S, Brody DL. New perspectives on amyloid-beta dynamics after acute brain injury: moving between experimental approaches and studies in the human brain. Arch Neurol. 2010;67(9):1068–73.

    PubMed  Google Scholar 

  141. Abrahamson EE et al. Caspase inhibition therapy abolishes brain trauma-induced increases in Abeta peptide: implications for clinical outcome. Exp Neurol. 2006;197(2):437–50.

    PubMed  CAS  Google Scholar 

  142. Tran HT et al. Distinct temporal and anatomical distributions of amyloid-beta and tau abnormalities following controlled cortical impact in transgenic mice. PLoS One. 2011;6(9):e25475.

    PubMed  CAS  Google Scholar 

  143. Tran HT et al. Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-beta accumulation and independently accelerates the development of tau abnormalities. J Neurosci. 2011;31(26):9513–25.

    PubMed  CAS  Google Scholar 

  144. Uryu K et al. Repetitive mild brain trauma accelerates Abeta deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. J Neurosci. 2002;22(2):446–54.

    PubMed  CAS  Google Scholar 

  145. Nakagawa Y et al. Traumatic brain injury in young, amyloid-beta peptide overexpressing transgenic mice induces marked ipsilateral hippocampal atrophy and diminished Abeta deposition during aging. J Comp Neurol. 1999;411(3):390–8.

    PubMed  CAS  Google Scholar 

  146. Nakagawa Y et al. Brain trauma in aged transgenic mice induces regression of established abeta deposits. Exp Neurol. 2000;163(1):244–52.

    PubMed  CAS  Google Scholar 

  147. Loane DJ et al. Modulation of ABCA1 by an LXR agonist reduces beta-amyloid levels and improves outcome after traumatic brain injury. J Neurotraum. 2011;28(2):225–36.

    Google Scholar 

  148. Del Valle J et al. Cerebral amyloid angiopathy, blood–brain barrier disruption and amyloid accumulation in SAMP8 mice. Neurodegener Dis. 2011;8(6):421–9.

    PubMed  Google Scholar 

  149. Hardy J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem. 2009;110(4):1129–34.

    PubMed  CAS  Google Scholar 

  150. Canepa E et al. Cholesterol and amyloid-beta: evidence for a cross-talk between astrocytes and neuronal cells. J Alzheimers Dis. 2011;25(4):645–53.

    PubMed  CAS  Google Scholar 

  151. Butterfield DA et al. Elevated oxidative stress in models of normal brain aging and Alzheimer’s disease. Life Sci. 1999;65(18–19):1883–92.

    PubMed  CAS  Google Scholar 

  152. Markesbery WR, Lovell MA. Damage to lipids, proteins, DNA, and RNA in mild cognitive impairment. Arch Neurol. 2007;64(7):954–6.

    PubMed  Google Scholar 

  153. Lovell MA, Markesbery WR. Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. J Neurosci Res. 2007;85(14):3036–40.

    PubMed  CAS  Google Scholar 

  154. Lovell MA, Markesbery WR. Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res. 2007;35(22):7497–504.

    PubMed  CAS  Google Scholar 

  155. Shao C et al. Oxidative stress in head trauma in aging. Free Radic Biol Med. 2006;41(1):77–85.

    PubMed  CAS  Google Scholar 

  156. Berchtold NC et al. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci USA. 2008;105(40):15605–10.

    PubMed  CAS  Google Scholar 

  157. Uryu K et al. Age-dependent synuclein pathology following traumatic brain injury in mice. Exp Neurol. 2003;184(1):214–24.

    PubMed  CAS  Google Scholar 

  158. Uryu K et al. Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp Neurol. 2007;208(2):185–92.

    PubMed  CAS  Google Scholar 

  159. Nicolakakis N, Hamel E. Neurovascular function in Alzheimer’s disease patients and experimental models. J Cereb Blood Flow Metab. 2011;31(6):1354–70.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dane Sorensen for the critical review of the manuscript and David Ajao for the tissue samples. This study was supported in part by the NIH R01HD061946, Pediatric Research Fund, the Swiss Science Foundation (FN 31003A-122166 and IZK0Z3-128973).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Badaut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pop, V., Badaut, J. A Neurovascular Perspective for Long-Term Changes After Brain Trauma. Transl. Stroke Res. 2, 533–545 (2011). https://doi.org/10.1007/s12975-011-0126-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-011-0126-9

Keywords

Navigation