Skip to main content

Advertisement

Log in

Analysis and simulation of the water and energy balance of intense agriculture in the Upper Rhine valley, south-west Germany

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Upper Rhine valley (SW Germany) belongs to one of the agriculturally most intense used regions in Germany. Climatic favourable conditions with mild winters, early springs and warm autumns lead to long vegetation periods and high agricultural productivity. One limiting factor is the water supply because of a negative annual climatic water balance, which has been increasing by −10 mm per decade in the last 50 years to −150 mm at present. Thus irrigation measures become more and more important for agricultural production in this region. Aim of this study was to measure and simulate water and energy fluxes on farm level in respect to the effects of irrigation measures in a region where farm sizes are small and diversity of land use high. In future these results will be used to conduct studies of energy and water fluxes on spatial scale (e.g. water catchments). The dynamics of the water and energy balance was observed with micrometeorological measurements using the eddy covariance methodology. Our investigation area had a size of about 6.5 ha and was cultivated with spring barley (Hordeum vulgare L.). Continuous measurements of all components of the water and energy balance as well as the vegetation specific-parameters, such as LAI, crop height and phenological macrostages, were conducted during the growing season which lasted from the beginning of April to 16 July 2014 (95 days). Additional irrigation was applied three times in this period by using a mobile sprinkler irrigation system. The observed dynamics were simulated with the physically based hydrological model TRAIN, which uses the Penman–Monteith approach for evapotranspiration simulation. Model efficiency was evaluated with Nash–Sutcliffe coefficient (NS). The TRAIN model was performing the simulations well with an r 2 = 0.72 with an slope of 1 and a NS = 0.77.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alavi N, Warland JS, Berg AA (2006) Filling gaps in evapotranspiration measurements for water budget studies: evaluation of a Kalman filtering approach. Agric For Meteorol 141:57–66. doi:10.1016/j.agrformet.2006.09.011

    Article  Google Scholar 

  • Ammann C, Flechard CR, Leifeld J, Neftel A, Fuhrer J (2007) The carbon budget of newly established temperate grassland depends on management intensity. Greenh Gas Balance Grassl Eur 121:5–20. doi:10.1016/j.agee.2006.12.002

    Google Scholar 

  • Arbeitskreis Kliwa (2012) Die Entwicklung von trockenen Großwetterlagen mit Auswirkungen auf den süddeutschen Raum. In: Caspary HJ (ed) Kliwa Berichte (16):1–156

  • Aubinet M, Grelle A, Ibron A, Rannik U, Moncrieff U, Foken T, Kowalski AS, Martin P, Berbinger P, Benrhofer C, Clement R, Elbers J, Graner A, Grunwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (1999) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. In: Fitter A, Raffaeli DG (eds). Adv Ecol Res (30):113–175

  • Bergström S (1995) The HBV model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, pp 443–476

    Google Scholar 

  • Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Cleulemans R, Clement R, Dolmann R, Grainer A, Gross Grunwald P, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski P, Lai CT, Law BE, Meyers T, Moncrieff H, Moors E, Munger JW, Pilegaard K, Rannik K, Rebmann K, Suyker A, Tenhunen A, Tu K, Verma S, Vesla T, Wilson K, Wofsy S (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69. doi:10.1016/S0168-1923(00)00225-2

    Article  Google Scholar 

  • Foken T (2008) The energy balance closure problem—an overview. Ecol Appl 18:1351–1368

    Article  Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105. doi:10.1016/0168-1923(95)02248-1

    Article  Google Scholar 

  • Foken T, Gockede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post-field quality control. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurements. Kluwer Academic, Dordrecht, pp 81–108

    Google Scholar 

  • Foken T, Mauder M, Liebethal C, Wimmer F, Beyerich F, Leps JP, Raasch S, Debruin HAR, Meijninger ML, Bange J (2010) Energy balance closure for the LITFASS-2003 experiment. Theor Appl Climatol. doi:10.1007/s00704-009-0216-8

    Google Scholar 

  • Foken T, Leuning R, Oncley SR, Mauder M, Aubinet M (2012) Corrections and data quality control. In: Aaubinet M, Vesala M, Papale D (eds) Eddy covariance. Springer, Netherlands, pp 85–131. doi:10.1007/978-94-007-2351-1_4 (Springer Atmospheric Sciences)

    Chapter  Google Scholar 

  • Ibrom A, Dellwik E, Flybjerk H, Jensen NO, Pilegaard K (2007) Strong low-pass filtering effects on water vapor flux measurements with closed-path eddy correlation systems. Agric For Meteorol 147:140–156

    Article  Google Scholar 

  • Ingwersen J, Steffens K, Högy P, Warrach-Sagi K, Zhunusbayeva D, Poltoradnev M, Gäbler R, Wizemann HD, Fangmeier A, Wulfmeyer V, Streck T (2011) Comparison of Noah simulations with eddy covariance and soil water measurements at a winter wheat stand. Agric For Meteorol 151:345–355

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and management. Oxford University Press, New York

    Google Scholar 

  • Kljun N, Calanca P, Rotach MW, Schmid HP (2004) A simple parameterisation for flux footprint predictions. Bound Layer Meteorol 112:503–523. doi:10.1023/B:BOUN.0000030653.71031.96

    Article  Google Scholar 

  • Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Bound Layer Meteorol 99:207–224. doi:10.1023/A:1018991015119

    Article  Google Scholar 

  • Landesanstalt für Entwicklung der Landwirtschaft und der ländlichen Räume (LEL) (2012) Agrarstruktur in Baden-Württemberg. www.agrarstruktur.landwirtschaft-bw.de. Accessed 14 Jan 2015

  • Lausch A, Pause M, Schmidt A, Salbach CH, Gwillym-Margianto S, Merbach I (2013) Temporal hyperspectral monitoring of chlorophyll, LAI, and water content of barley during a growing season. Can J Remote Sens 39:191–207. doi:10.5589/m13-028

    Article  Google Scholar 

  • Liebethal C, Foken T (2007) Evaluation of six parameterization approaches for the ground heat flux. Theor Appl Climatol 88:43–56. doi:10.1007/s00704-005-0234-0

    Article  Google Scholar 

  • Liedtke H, Marcinek J (eds) (2002) Physische geographie deutschlands. Klett-Perthes, Gotha

    Google Scholar 

  • Martens SN, Ustin SL, Rousseau RA (1993) Estimation of tree canopy leaf area index by gap fraction analysis. For Ecol Manage 61:91–108. doi:10.1016/0378-1127(93)90192-P

    Article  Google Scholar 

  • Mauder M, Foken T (2006) Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorol Z 15:597–609. doi:10.1127/0941-2948/2006/0167

    Article  Google Scholar 

  • Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid HP, Schmidt M, Steinberecher R (2013) A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric For Meteorol 169:122–135. doi:10.1016/j.agrformet.2012.09.006

    Article  Google Scholar 

  • Mcmillen RT (1988) An eddy correlation technique with extended applicability to non-simple Terrain. Bound Layer Meteorol 43:231–245

    Article  Google Scholar 

  • Meier U (2001) Growth stages of mono-and dicotyledonous plants: BBCH-Monograph. Blackwell, Berlin

    Google Scholar 

  • Menzel L (1996) Modelling canopy resistances and transpiration of grassland. Phys Chem Earth 21–3:123–129

    Article  Google Scholar 

  • Menzel L (1997) Modellierung der Evapotranspiration im System Boden-Pflanze-Atmosphäre (simulation of evapotranspiration at the soil-vegetation-atmosphere interface; in German). Zürcher Geographische Schriften No 67. Swiss Federal Institute of Technology (ETH), Zürich

  • Menzel L, Koch J, Onigkeit J, Schaldach R (2009) Modelling the effects of land-use and land-cover change on water availability in the Jordan River region. Adv Geosci 21:73–80

    Article  Google Scholar 

  • Meynen E, Schmithüsen J (1962) Handbuch der naturräumlichen Gliederung Deutschlands. Bundesanstalt für Landeskunde und Raumforschung, Bad Godesberg

    Google Scholar 

  • Moncrieff JB, Clement R, Finnigan J, Meyers T (2004) Averaging, detrending and filtering of eddy covariance time series. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurements. Kluwer Academic, Dordrecht, pp 7–31

    Google Scholar 

  • Nash JE, Sutclieffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papapel D, Aaubinet M, Berbinger P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal J, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari G, Vesla T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–1439. doi:10.1111/j.1365-2486.2005.001002.x

    Article  Google Scholar 

  • Schmidt M, Reichenau TG, Fiener P, Schneider P (2012) The carbon budget of a winter wheat field: an eddy covariance analysis of seasonal and inter-annual variability. Agric For Meteorol 165:114–126. doi:10.1016/j.agrformet.2012.05.012

    Article  Google Scholar 

  • Soon YK (1988) Root distribution of and water uptake by field-grown barley in a black solod. Can J Soil Sci 68:425–432. doi:10.4141/cjss88-039

    Article  Google Scholar 

  • Törnros T, Menzel L (2014a) Leaf area index as a function of precipitation within a hydrological model. Hydrol Res 45:660–672. doi:10.2166/nh.2013.143

    Article  Google Scholar 

  • Törnros T, Menzel L (2014b) Addressing drought conditions under current and future climates in the Jordan River region. Hydrol Earth Syst Sci (HESS) 18:305–318. doi:10.5194/hess-18-305-2014

    Article  Google Scholar 

  • Twine TE, Kustas WP, Norman JM, Cook DR, Houser DR, Meyers TP, Prueger TP, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103:279–300. doi:10.1016/S0168-1923(00)00123-4

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapor transfer. Quart J R Meteorol Soc 106:85–100

    Article  Google Scholar 

  • Wimmer F, Schlaffer S, aus der Beek T, Menzel L (2009) Distributed modelling of climate change impacts on snow sublimation in northern Mongolia. Adv Geosci 21:117–124

    Article  Google Scholar 

Download references

Acknowledgments

We thank the farmer Mr. Welk for his comprehensive support and his circumspection with the monitoring system. Further we gratefully acknowledge the support from the Federal Department for Environment, Water Management and Trade Control of Rhineland Palatinate (LUWG) with equipment and data as part of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Stork.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Water in Germany”, guest edited by Daniel Karthe, Peter Chifflard, Bernd Cyffka, Lucas Menzel, Heribert Nacken, Uta Raeder, Mario Sommerhäuser and Markus Weiler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stork, M., Menzel, L. Analysis and simulation of the water and energy balance of intense agriculture in the Upper Rhine valley, south-west Germany. Environ Earth Sci 75, 1166 (2016). https://doi.org/10.1007/s12665-016-5980-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5980-z

Keywords

Navigation