Skip to main content

Advertisement

Log in

Assessment of heavy metal availability (Pb, Cu, Cr, Cd, Zn) and speciation in contaminated soils and sediment of discharge by sequential extraction

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The accumulation of the heavy metals in the soil received a particular interest because of their toxicity and retention time in the soil which is slower than in other compartments of the biosphere. Knowledge of the total concentration of metals in soils and sediments is frequently insufficient to ascertain environmental risk. Simple and sequential extractions are useful tools for estimating the mobility of metals. In this study we were interested in highly toxic metals such as cadmium, lead, chromium, copper, and zinc in the soil of a controlled dump and the witness soil as well as the sediment of this dump in order to assess the mobility of these metals and their toxicity. The physicochemical parameters pH, organic matter, total calcium, cation exchange capacity, and total nitrogen were determined on the samples. Results show that average contents of heavy metals exceed the threshold recommended by the AFNOR NF U 44-041 standard. The results of the sequential extraction of heavy metals in the composite samples of soil and sediment according to the Community Bureau of Reference method show that cadmium is mainly associated with the exchangeable fraction (for sediment 77.7 % and for soil 40 %). Cadmium is therefore mainly associated with the mobile fraction and the risk of its transfer is high. Zinc is mainly bound to the metallic oxyhydroxides and carbonates, while Cu and Pb are mostly bound to organic matter and metallic oxyhydroxides in the proportions of 96.12 % (Cu) and 84.38 % (Pb), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ADEME (1999) Les installations de stockage de déchets ménagers et assimilés: techniques et recommandations. ADEME Editions, Paris

    Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie Academic, Professional, London

    Book  Google Scholar 

  • Alvarez JM, Lopez-Valdivia LM, Novillo J, Obrador A, Rico MI (2006) Comparison of EDTA and sequential extraction tests for phytoavailability prediction of manganese and zinc in agricultural alkaline soils. Geoderma 132:450–463

    Article  Google Scholar 

  • Aulin C, Neretnieks I (1997) A material balance for an Industrial Landfill. In: Proceeding Sardinia, 5th international waste management and landfill symposium, vol 3. Cagliari, Italy, pp 173–180

  • Benard A (2003) Le plomb et le chrome dans les ciments: Spéciation et modélisation du transfert au cours de la lixiviation. Thèse de doctorat, Université de droit, d’économie et des sciences de Marseille, France

  • Bjerre GK, Schierup HH (1985) Influence of waterlogging on availability and uptake of heavy metals by oat grown in different soils. Plant Soil 88:45–56

    Article  Google Scholar 

  • Blanchard C (2000) Caractérisation de la mobilisation potentielle des polluants inorganiques dans les sols pollués. Thèse de doctorat, Institut national des sciences appliquées de Lyon, France

  • Bodjona B, Kili AK, Tchegueni S, Kennou B, Tchangbedji G, El Meray M (2012) Evaluation de la quantité des métaux lourds dans la décharge d’Agoè (Lomé-Togo): cas du plomb, cadmium, cuivre, nickel et zinc. Int J Biol Chem Sci 6(3):1368–1380

    Google Scholar 

  • Bozkurt S, Moreno L, Neretnieks I (1999) Long-term fate of organics in waste deposits and its effect on metal release. Sci Total Environ 228:135–152. doi:10.1016/S0048-9697(99)00047-9

    Article  Google Scholar 

  • Bur T, Probst JL, N’guessan M, Probst A (2009) Distribution and origin of lead in stream sediments from small agricultural catchments draining Miocene molassic deposits (SW France). Appl Geochem 24:1324–1338

    Article  Google Scholar 

  • Chaignon V (2001) Biodisponibilité du cuivre dans la rhizosphère de différentes plantes cultivées. Cas de sols viticoles contaminés par des fongicides. Thèse: Ecole doctorale, Sciences de l’Environnement : Système Terre, Université d’Aix-Marseille, France

  • Deneux-Mustin S, Roussel-Debet S, Mustin C, Henner P, Munier-Lamy C, Colle C, Berthelin J, Garnier-Laplace J, Leyval C (2003) Mobilité et transfert racinaire des éléments en traces: influence des micro-organismes du sol. TEC & DOC, Paris

    Google Scholar 

  • De Matos AT, Fontes MPF, Da Costa LM, Martinez MA (2001) Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environ Pollut 111:429-435

    Article  Google Scholar 

  • Elass K, Laachach A, Azzi M (2003) Etude de la biodisponibilité des métaux lourds dans les sols agricoles irrigués par des eaux pollués. Rev Francophone d’Ecologie Ind 32:1–6

    Google Scholar 

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324

    Article  Google Scholar 

  • Franco-Uría A, Lôpez-Mateo C, Roca E, Fernaíndez-Marcos ML (2009) Source identification of heavy metals in pasturel and by multivariate analysis in NW Spain. J Hazard Mater 165:1008–1015

    Article  Google Scholar 

  • Gismera MJ, Lacal J, da Silva P, Garcia R, Sevilla MT, Procopio JR (2004) Study of metal fractionation in river sediments. A comparison between kinetic and sequential extraction procedures. Environ Pollut 127:175–182

    Article  Google Scholar 

  • Hakkou R (2001) La décharge publique de Marrakech: caractérisation des lixiviats, étude de leur impact sur les ressources en eau et essais de traitement. Thèse de Doctorat d’État, Université Cadi Ayyad, Marrakech, Maroc

  • Hamilton JW, Wetterham KE (1988) Chromium. In: Seiler HG, Sigel H, Sigel A (eds) Handbook on toxicity of inorganic compounds. Marcel Dekker, New York, pp 239–241

    Google Scholar 

  • Hasan HAH (2007) Role of rock phosphate in alleviation of heavy metals stress on Fusarium oxysporum. Plant Soil Environ 53(1):1–6

    Article  Google Scholar 

  • Howari F (2004) Heavy metal speciation and mobility assessment of arid soils in the vicinity of Al Ain landfill, United Arab Emirates. Int J Environ Pollut 22(6):721–731

    Article  Google Scholar 

  • Kersten M, Forstner U (1986) Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments. Water Sci Technol 18:121–130

    Google Scholar 

  • Kolédzi KE, Baba G, Feuillade G, Matejka G (2011) Caractérisation physique des déchets solides urbains à Lomé au Togo, dans la perspective du compostage décentralisé dans les quartiers. Rév Déchets Sci et Techniques Mars 59

  • Kouame IK et al (2006) Mobilité relative des métaux lourds issus de la décharge d’Akouédo et risque de contamination de la nappe du Continental Terminal (Abidjan-Côte d’Ivoire). Afrique Sci 2:39–56

    Google Scholar 

  • Leleyter L, Baraud F (2006) Selectivity and efficiency of the acido-soluble extraction in sequential extraction procedure. Int J Soil Sci 1:168–170

    Article  Google Scholar 

  • Leleyter L, Probst JL (1999) A new sequential extraction procedure for the speciation of particulate trace elements in river sediments. Int J Environ Anal Chem 73:109–128

    Article  Google Scholar 

  • Lu XW, Wang LJ, Li LY, Lei K, Huang L, Kang D (2010) Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J Hazard Mater 173:744–749

    Article  Google Scholar 

  • Malayeri EB (1995) Décontamination des sols contenant des métaux lourds à l’aide de plantes et microorganismes. Thèse de Doctorat, Université de Nancy I, France

  • Mehdi MM, Belabbed BE, Djabri L, Hani A, Laour R (2007) Caractérisation de la décharge publique de la ville de Tiaret et son impact sur la qualité des eaux souterraines. Courrier du Savoir 08:93–99

    Google Scholar 

  • Mojahid Y (2007) Physic-chimie, mineralogy et dynamique du phosphore et du potassium dans quelques sols Marocains. these de doctorat Université Mohamed V Agdal Rabat, Maroc

  • N’guessan YM, Probst JL, Bur T, Probst A (2009) Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): where do they come from? Sci Total Environ 407:2939–2952

    Article  Google Scholar 

  • Rapin F, Tessier A, Campbell PGC, Carignan R (1986) Potential artifacts in the determination of metal partitioning in sediments by a sequential extraction procedure. Environ Sci Technol 20:836–840

    Article  Google Scholar 

  • Rousseau C, Baraud F, Leleyter L, Gil O (2009) Cathodic protection by zinc sacrificial anodes: impact on marine sediment metallic contamination. J Hazard Mater 167:953–958

    Article  Google Scholar 

  • Sirven JB (2006) Détection de métaux lourds dans les sols par Spectroscopie d’Emission sur Plasma Induit par Laser (LIBS). Thèse de doctorat, Université de Bordeaux, France, pp 6–7

  • Suh J-Y (2004) Spatial distribution of heavy metals in soils and groundwater at the 2000 Olympic Games site Sydney, Australia. J Soil Groundw Environ 9(1):70–78

    Google Scholar 

  • Suh JY, Birch GF, Hughes K, Matthai C (2004) Spatial distribution and source of heavy metals in reclaimed lands of Homebush Bay: the venue of the 2000 Olympic Games, Sydney, New South Wales. Aust J Earth Sci 51:53–67

    Article  Google Scholar 

  • Suresh G, Ramasamy V, Meenakshisundaram V, Venkatachalapathy R, Ponnusamy V (2011) Influence of mineralogical and heavy metal composition on natural radionuclide contents in the river sediments. Appl Radiat Isot 69:1466–1474

    Article  Google Scholar 

  • Suresh G, Sutharsan P, Ramasamy V, Venkatachalapathy R (2012) Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol Environ Saf. doi:10.1016/j.ecoenv.2012.06.027

    Google Scholar 

  • Tokaliǒglu S, Kartal S, Elçi L (2000) Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Anal Chim Acta 413:33–40

    Article  Google Scholar 

  • Ure AM, Quevauviller PH, Munteau H, Griepink B (1993) Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European Communities. Int J Environ Anal Chem 51:135–151

    Article  Google Scholar 

  • Wang QR, Cui YS, Liu XM, Dong YT, Christie P (2003) Soil contamination and plant uptake of heavy metals at polluted sites in China. J Environ Sci Health Part A 38:823–838

    Article  Google Scholar 

  • Yobouet YA, Adouby K, Trokourey A, Yao B (2010) Cadmium, copper, lead and zinc speciation in contaminated soils. Int J Eng Sci Technol 2(5):802–812

    Google Scholar 

  • Zhou F, Guo HC, Liu L (2007) Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong. Environ Geol 53:295–305

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Meray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennou, B., El Meray, M., Romane, A. et al. Assessment of heavy metal availability (Pb, Cu, Cr, Cd, Zn) and speciation in contaminated soils and sediment of discharge by sequential extraction. Environ Earth Sci 74, 5849–5858 (2015). https://doi.org/10.1007/s12665-015-4609-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4609-y

Keywords

Navigation