Skip to main content
Log in

Transmission and reflection of SV waves at micropolar solid–liquid interface with dual-phase lag theory

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The target of this study is to see the influence of the magnetic field, angular velocity, initial stress, and rotation on the incident SV wave. The SV waves are reflected as well transmitted at the interface of micropolar solid and liquid half-space. The dual-phase lag theory is used for energy equation; the basic equations have been discussed to drive results for transmitted thermal and P waves and reflected thermal, micro-rotation, SV and P waves. The transmission and reflection of SV waves are examined after applying the boundary conditions, and amplitude ratios are figured by the matrix inversion method. Graphs are sketched and discussed for various values pertinent parameters on amplitude ratios. We perceived that the amplitude ratio of the P wave is dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N R Garg, A Goel, A Miglani and R Kumar Earth Planets and Space 56 407 (2004).

    Article  ADS  Google Scholar 

  2. A C Eringen and E S Suhubi Int. J. Engineering Science 2 2 189 (1964).

    Article  Google Scholar 

  3. E S Suhubl and A C Eringen Int. J. Engineering Science 2 4 389 (1964).

    Article  Google Scholar 

  4. A C Eringen J. Mathematics and Mechanics 15 6 909 (1966).

    Google Scholar 

  5. G A Maugin and A Miled Int. J. Engineering science 24 9 1477 (1986).

    Article  Google Scholar 

  6. T R Tauchert, W D Claus Jr and T Ariman Int. J. Engineering Science 6 1 37 (1968).

    Article  Google Scholar 

  7. A C Eringen, International Centre for Mechanical Science. (1970).

  8. M I A Othman and E M Abd-Elaziz Microsystem Technologies. 23 10 4979 (2017).

    Article  Google Scholar 

  9. N Kumari, S Devi and V Kaliraman J. Computer and Mathematical Sciences 9 9 1239 (2018).

    Article  Google Scholar 

  10. R Lianngenga and S S Singh J. Vibration and Control. 26 21 1948 (2020).

    Article  MathSciNet  Google Scholar 

  11. M Turkyilmazoglu Int. J. Heat and Mass Transfer. 106 127 (2017).

    Article  Google Scholar 

  12. M Biot J. Appl. Phys. 27 249 (1956).

    ADS  Google Scholar 

  13. H W Lord and Y Shulman J. Mechanics and Physics of Solids. 15 5 299 (1967).

    Article  ADS  Google Scholar 

  14. A E Green and K A Lindsay Journal of Elasticity. 2 1 1 (1972).

    Article  Google Scholar 

  15. D Y Tzou J. Heat Trans. 117 8 (1995).

    Article  Google Scholar 

  16. D Y Tzou J. Thermophys. Heat Transfer. 9 686 (1995).

    Article  Google Scholar 

  17. A Jahangir, S Atwa, N Rehman, M Usman, M B Ashraf and N Muhammad Indian J Phys. 94 7 987 (2020).

    Article  ADS  Google Scholar 

  18. Mohamed I A Othman, Abo-el-nour N. Abd-alla and Elsayed M Abd-Elaziz Indian J Phys. 94(3) 309 (2020).

  19. A A Khan and A Afzal J. Brazilian Society of Mechanical Sciences and Engineering 40 4 208 (2018).

    Article  Google Scholar 

  20. M Turkyilmazoglu De Gruyter. 71 6a 549 (2016).

    Google Scholar 

  21. M Turkyilmazoglu American Society of Civil Engineers. 29 6 04016049 (2016).

    Google Scholar 

  22. M Turkyilmazoglu Int. J. Engineering Science. 51 233 (2012).

    Article  Google Scholar 

  23. C G Knott The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 48 290 64 (1899).

    Article  Google Scholar 

  24. S M Abo-Dahab and M M Salama Journal of Thermal Stresses. 37 9 1124 (2014).

    Article  Google Scholar 

  25. M C Singh and N Chakraborty Applied Mathematical Modelling. 37 1–2 463 (2013).

    Article  MathSciNet  Google Scholar 

  26. V R Parfitt and A C Eringen J. Acoust. Soc. Aner. 45 1258 (1969).

    Article  ADS  Google Scholar 

  27. A A Khan, A Zaman and S Yaseen Results in Physics 8 324 (2018).

    Article  ADS  Google Scholar 

  28. A M Abd-Alla, S M Abo-Dahab and A A Kilany Journal of Thermal Stresses 39 8 960 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.A., Tanveer, S. Transmission and reflection of SV waves at micropolar solid–liquid interface with dual-phase lag theory. Indian J Phys 96, 1153–1165 (2022). https://doi.org/10.1007/s12648-021-02056-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02056-7

Keywords

Navigation