Skip to main content
Log in

Evaluation of the Impacts of Long-Term Enriched Artemia with Bacillus subtilis on Growth Performance, Reproduction, Intestinal Microflora, and Resistance to Aeromonas hydrophila of Ornamental Fish Poecilia latipinna

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The present study investigated the effect of enriched Artemia with Bacillus subtilis on growth performance, reproductive factors, proximate composition, intestinal microflora, and resistance to Aeromonas hydrophila of ornamental fish, Poecilia latipinna. Using a completely randomized design, the experiment included three groups. The first group was fed with commercial food without any probiotic. The second group was fed with unenriched Artemia, and the last group consumed long-time enriched Artemia with Bacillus subtilis. The bacteria B. subtilis with a density of 1 × 105 CFU mL−1 was added daily to Artemia culture medium. The total microflora and Bacillus subtilis counts were significantly increased in enriched Artemia compared to the unenriched group (P < 0.05). In fish fed groups, growth factors did not show any significant difference (P > 0.05). The maximum relative fecundity (28.65 ± 2.52 egg number g−1), fry production (62.93 ± 4.6 individual per female), and fry survival (70.97 ± 1.56%) obtained in the third group were found to be significantly more than those in the first and the second groups. Moreover, intestinal bacterial count for Bacillus revealed that the higher concentration of bacteria was significantly related to the third group (6.24 ± 0.11 log CFU g−1) (P < 0.05). Maximum protein and fat contents were observed in fish fed with Bacillus-enriched Artemia; however, no significant difference was found between control and unenriched Artemia groups (P > 0.05). The highest amount of ash was observed in fish fed with commercial food without any probiotic (P < 0.05). At the end of the feeding period, each of the three groups along with positive group (oxytetracycline 100 mg kg−1 of commercial food) was exposed to A. hydrophila (BCCM5/LMG3770) bacteria intraperitoneally. Based on the results, the lowest cumulative mortality was significantly found in group three (68.75 ± 3.6%) and positive group (62.5 ± 7.0%) compared to control and unenriched Artemia groups (P < 0.05). Hence, B. subtilis with a concentration of 1 × 105 CFU mL−1 during the period of Artemia culturing can improve the reproductive parameters, intestinal microflora, and resistance to pathogenic bacteria of Poecilia latipinna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Langroudi HE, Mousavi SH, Falahatkar B, Moradkhani Z (2009) Effect of diets containing artemia enriched with unsaturated fatty acids and vitamin C on angel fish Pterophyllum scalare propagation. Int Aquat Res 1:67–72

    Google Scholar 

  2. Wang Y-B, Li J-R, Lin J (2008) Probiotics in aquaculture: challenges and outlook. Aquaculture 281(1–4):1–4. https://doi.org/10.1016/j.aquaculture.2008.06.002

    Article  Google Scholar 

  3. Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RT, Bøgwald J, Castex M, Ringø E (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302(1):1–18. https://doi.org/10.1016/j.aquaculture.2010.02.007

    Article  Google Scholar 

  4. Holzapfel WH, Haberer P, Snel J, Schillinger U (1998) Overview of gut flora and probiotics. Int J Food Microbiol 41(2):85–101. https://doi.org/10.1016/S0168-1605(98)00044-0

    Article  CAS  PubMed  Google Scholar 

  5. Gatesoupe F-J (1994) Lactic acid bacteria increase the resistance of turbot larvae, Scophthalmus maximus, against pathogenic Vibrio. Aquat Living Resour 7(4):277–282. https://doi.org/10.1051/alr:1994030

    Article  Google Scholar 

  6. Balcázar JL, De Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Muzquiz JL (2006) The role of probiotics in aquaculture. Vet Microbiol 114(3):173–186. https://doi.org/10.1016/j.vetmic.2006.01.009

    Article  PubMed  Google Scholar 

  7. Nayak S (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immun 29(1):2–14. https://doi.org/10.1016/j.fsi.2010.02.017

    Article  CAS  Google Scholar 

  8. Dimitroglou A, Merrifield DL, Carnevali O, Picchietti S, Avella M, Daniels C, Güroy D, Davies SJ (2011) Microbial manipulations to improve fish health and production–a Mediterranean perspective. Fish Shellfish Immun 30(1):1–16. https://doi.org/10.1016/j.fsi.2010.08.009

    Article  CAS  Google Scholar 

  9. Tukmechi A, Bandboni M (2014) Effects of Saccharomyces cerevisiae supplementation on immune response, hematological parameters, body composition and disease resistance in rainbow trout, Oncorhynchus mykiss (Walbaum, 1792). J Appl Ichthyol 30(1):55–61. https://doi.org/10.1111/jai.12314

    Article  CAS  Google Scholar 

  10. Azimirad M, Meshkini S, Ahmadifard N, Hoseinifar SH (2016) The effects of feeding with synbiotic (Pediococcus acidilactici and fructooligosaccharide) enriched adult Artemia on skin mucus immune responses, stress resistance, intestinal microbiota and performance of angelfish (Pterophyllum scalare). Fish Shellfish Immun 54:516–522. https://doi.org/10.1016/j.fsi.2016.05.001

    Article  Google Scholar 

  11. Ghosh S, Sinha A, Sahu C (2007) Effect of probiotic on reproductive performance in female livebearing ornamental fish. Aquac Res 38(5):518–526. https://doi.org/10.1111/j.1365-2109.2007.01696.x

    Article  Google Scholar 

  12. González-Félix ML, Gatlin DM III, Urquidez-Bejarano P, de la Reé-Rodríguez C, Duarte-Rodríguez L, Sánchez F, Casas-Reyes A, Yamamoto FY, Ochoa-Leyva A, Perez-Velazquez M (2018) Effects of commercial dietary prebiotic and probiotic supplements on growth, innate immune responses, and intestinal microbiota and histology of Totoaba macdonaldi. Aquaculture 491:239–251. https://doi.org/10.1016/j.aquaculture.2018.03.031

    Article  CAS  Google Scholar 

  13. Yi Y, Zhang Z, Zhao F, Liu H, Yu L, Zha J, Wang G (2018) Probiotic potential of Bacillus velezensis JW: antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish Shellfish Immun 78:322–330. https://doi.org/10.1016/j.fsi.2018.04.055

    Article  CAS  Google Scholar 

  14. Tseng D-Y, Ho P-L, Huang S-Y, Cheng S-C, Shiu Y-L, Chiu C-S, Liu C-H (2009) Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20. Fish Shellfish Immun 26(2):339–344. https://doi.org/10.1016/j.fsi.2008.12.003

    Article  CAS  Google Scholar 

  15. Liu K-F, Chiu C-H, Shiu Y-L, Cheng W, Liu C-H (2010) Effects of the probiotic, Bacillus subtilis E20, on the survival, development, stress tolerance, and immune status of white shrimp, Litopenaeus vannamei larvae. Fish Shellfish Immun 28(5):837–844. https://doi.org/10.1016/j.fsi.2010.01.012

    Article  CAS  Google Scholar 

  16. Balcázar JL, Rojas-Luna T (2007) Inhibitory activity of probiotic Bacillus subtilis UTM 126 against Vibrio species confers protection against vibriosis in juvenile shrimp (Litopenaeus vannamei). Curr Microbiol 55(5):409–412. https://doi.org/10.1007/s00284-007-9000-0

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh S, Sinha A, Sahu C (2008) Dietary probiotic supplementation in growth and health of live-bearing ornamental fishes. Aquac Nutr 14(4):289–299. https://doi.org/10.1111/j.1365-2095.2007.00529.x

    Article  CAS  Google Scholar 

  18. Lin S, Mao S, Guan Y, Luo L, Luo L, Pan Y (2012) Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Aquaculture 342:36–41. https://doi.org/10.1016/j.aquaculture.2012.02.009

    Article  CAS  Google Scholar 

  19. He S, Liu W, Zhou Z, Mao W, Ren P, Marubashi T, Ringø E (2011) Evaluation of probiotic strain Bacillus subtilis C-3102 as a feed supplement for koi carp (Cyprinus carpio). J Aquac Res Dev S1:005:1–7. https://doi.org/10.4172/2155-9546.S4171-4005

    Article  Google Scholar 

  20. Makridis P, Bergh Ø, Skjermo J, Vadstein O (2001) Addition of bacteria bioencapsulated in Artemia metanauplii to a rearing system for halibut larvae. Aquac Int 9(3):225–235. https://doi.org/10.1023/A:1016815929846

    Article  Google Scholar 

  21. Gatesoupe F-J (1991) Managing the dietary value of Artemia for larval turbot, Scophthalmus maximus; the effect of enrichment and distribution techniques. Aquac Eng 10(2):111–119. https://doi.org/10.1016/0144-8609(91)90004-4

    Article  Google Scholar 

  22. Negm RK, Cobcroft JM, Brown MR, Nowak BF, Battaglene SC (2014) Performance and skeletal abnormality of striped trumpeter Latris lineata larvae and post larvae fed vitamin A enriched Artemia. Aquaculture 422:115–123. https://doi.org/10.1016/j.aquaculture.2013.11.008

    Article  CAS  Google Scholar 

  23. Soltanian S, Dhont J, Sorgeloos P, Bossier P (2007) Influence of different yeast cell-wall mutants on performance and protection against pathogenic bacteria (Vibrio campbellii) in gnotobiotically-grown Artemia. Fish Shellfish Immun 23(1):141–153. https://doi.org/10.1016/j.fsi.2006.09.013

    Article  CAS  Google Scholar 

  24. Gomez-Gil B, Herrera-Vega MA, Abreu-Grobois FA, Roque A (1998) Bioencapsulation of two different Vibrio species in nauplii of the brine shrimp (Artemia franciscana). Appl Environ Microbiol 64(6):2318–2322

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sorgeloos P (1986) Manual for the culture and use of brine shrimp Artemia in aquaculture. State University of Ghent, Faculty of Agriculture, Ghent 319 p

    Google Scholar 

  26. Coutteau P, Lavens P, Sorgeloos P (1990) Baker’s yeast as a potential substitute for live algae in aquaculture diets: Artemia as a case study. J World Aquacult Soc 21(1):1–9. https://doi.org/10.1111/j.1749-7345.1990.tb00947.x

    Article  Google Scholar 

  27. Niu Y, Defoirdt T, Baruah K, Van de Wiele T, Dong S, Bossier P (2014) Bacillus sp. LT3 improves the survival of gnotobiotic brine shrimp (Artemia franciscana) larvae challenged with Vibrio campbellii by enhancing the innate immune response and by decreasing the activity of shrimp-associated vibrios. Vet Microbiol 173(3):279–288. https://doi.org/10.1016/j.vetmic.2014.08.007

    Article  CAS  PubMed  Google Scholar 

  28. Tukmechi A, HRR A, Manaffar R, Sheikhzadeh N (2011) Dietary administration of beta-mercapto-ethanol treated Saccharomyces cerevisiae enhanced the growth, innate immune response and disease resistance of the rainbow trout, Oncorhynchus mykiss. Fish Shellfish Immun 30(3):923–928. https://doi.org/10.1016/j.fsi.2011.01.016

    Article  CAS  Google Scholar 

  29. Utiswannakul P, Sangchai S, Rengpipat S (2011) Enhanced growth of black tiger shrimp Penaeus monodon by dietary supplementation with Bacillus (BP11) as a probiotic. J Aquac Res Dev. https://doi.org/10.4172/2155-9546.S4171-4006

  30. Mahious A, Gatesoupe F, Hervi M, Metailler R, Ollevier F (2006) Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, C. 1758). Aquac Int 14(3):219. https://doi.org/10.1007/s10499-005-9003-4

    Article  CAS  Google Scholar 

  31. Sneath PH (1986) Endospore-forming Gram-positive rods and cocci. In: Bergey’s manual of systemic bacteriology, vol 2. Williams & Wilkins, pp 1104–1207

  32. Cappuccino N, Mackay R, Eisner C (2002) Spread of the invasive alien vine Vincetoxicum rossicum: tradeoffs between seed dispersability and seed quality. Am Midl Nat 148(2):263–270. https://doi.org/10.1674/0003-0031(2002)148[0263:SOTIAV]2.0.CO;2

  33. Chitra G, Krishnaveni N (2013) Effect of probiotics on reproductive performance in female livebearing ornamental fish Poecilia sphenops. Int J Pure Appl Zool 1(3):235–245

    Google Scholar 

  34. Misra CK, Das BK, Mukherjee SC, Pattnaik P (2006) Effect of long term administration of dietary β-glucan on immunity, growth and survival of Labeo rohita fingerlings. Aquaculture 255:82–94. https://doi.org/10.1016/j.aquaculture.2005.12.009

    Article  CAS  Google Scholar 

  35. AOAC (1990) In: Horwitz W (ed) Official methods of analyses, 15th edn. Association of Official Analytical Chemists Inc., Arlington 445p

    Google Scholar 

  36. Douillet PA, Langdon CJ (1994) Use of a probiotic for the culture of larvae of the Pacific oyster (Crassostrea gigas Thunberg). Aquaculture 119(1):25–40. https://doi.org/10.1016/0044-8486(94)90441-3

    Article  Google Scholar 

  37. Ghosh K, Sen SK, Ray AK (2003) Supplementation of an isolated fish gut bacterium, Bacillus circulans, in formulated diets for rohu, Labeo rohita, fingerlings. Isr J Aquac 55(1):13–21. http://hdl.handle.net/10524/19065

    Google Scholar 

  38. Carnevali O, Zamponi MC, Sulpizio R, Rollo A, Nardi M, Orpianesi C, Silvi S, Caggiano M, Polzonetti AM, Cresci A (2004) Administration of probiotic strain to improve sea bream wellness during development. Aquac Int 12(4–5):377–386. https://doi.org/10.1023/B:AQUI.0000042141.85977.bb

    Article  Google Scholar 

  39. Abdel-Tawwab M, Abdel-Rahman AM, Ismael NE (2008) Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture 280(1–4):185–189. https://doi.org/10.1016/j.aquaculture.2008.03.055

    Article  Google Scholar 

  40. El-Rhman AMA, Khattab YA, Shalaby AM (2009) Micrococcus luteus and Pseudomonas species as probiotics for promoting the growth performance and health of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immun 27(2):175–180. https://doi.org/10.1016/j.fsi.2009.03.020

    Article  Google Scholar 

  41. Avella MA, Gioacchini G, Decamp O, Makridis P, Bracciatelli C, Carnevali O (2010a) Application of multi-species of Bacillus in sea bream larviculture. Aquaculture 305(1–4):12–19. https://doi.org/10.1016/j.aquaculture.2010.03.029

    Article  Google Scholar 

  42. Nandi A, Banerjee G, Dan SK, Ghosh K, Ray AK (2018) Evaluation of in vivo probiotic efficiency of Bacillus amyloliquefaciens in Labeo rohita challenged by pathogenic strain of Aeromonas hydrophila MTCC 1739. Probiotics Antimicrob Proteins 10(2):391–398. https://doi.org/10.1007/s12602-017-9310-x

    Article  CAS  PubMed  Google Scholar 

  43. Adorian TJ, Jamali H, Farsani HG, Darvishi P, Hasanpour S, Bagheri T, Roozbehfar R (2018) Effects of probiotic bacteria Bacillus on growth performance, digestive enzyme activity, and hematological parameters of Asian sea bass, Lates calcarifer (Bloch). Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-018-9393-z

  44. Sun Y-Z, Yang H-L, Ma R-L, Lin W-Y (2010) Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immun 29(5):803–809. https://doi.org/10.1016/j.fsi.2010.07.018

    Article  Google Scholar 

  45. Avella MA, Olivotto I, Silvi S, Place AR, Carnevali O (2010b) Effect of dietary probiotics on clownfish: a molecular approach to define how lactic acid bacteria modulate development in a marine fish. Am J Physiol-Reg 298(2):359–371. https://doi.org/10.1152/ajpregu.00300.2009

    Article  CAS  Google Scholar 

  46. Patra S, Mohamed K (2003) Enrichment of Artemia nauplii with the probiotic yeast Saccharomyces boulardii and its resistance against a pathogenic Vibrio. Aquac Int 11(5):505–514. https://doi.org/10.1023/B:AQUI.0000004193.40039.54

    Article  Google Scholar 

  47. Verschuere L, Rombaut G, Huys G, Dhont J, Sorgeloos P, Verstraete W (1999) Microbial control of the culture of Artemia juveniles through preemptive colonization by selected bacterial strains. Appl Environ Microbiol 65(6):2527–2533

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jamali H, Imani A, Abdollahi D, Roozbehfar R, Isari A (2015) Use of probiotic Bacillus spp. in rotifer (Brachionus plicatilis) and Artemia (Artemia urmiana) enrichment: effects on growth and survival of Pacific white shrimp, Litopenaeus vannamei, larvae. Probiotics Antimicrob Prot 7(2):118–125. https://doi.org/10.1007/s12602-015-9189-3

    Article  Google Scholar 

  49. Ringø E, Birkbeck T (1999) Intestinal microflora of fish larvae and fry. Aquac Res 30(2):73–93. https://doi.org/10.1046/j.1365-2109.1999.00302.x

    Article  Google Scholar 

  50. Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274(1):1–14. https://doi.org/10.1016/j.aquaculture.2007.11.019

    Article  Google Scholar 

  51. Picchietti S, Fausto AM, Randelli E, Carnevali O, Taddei AR, Buonocore F, Scapigliati G, Abelli L (2009) Early treatment with Lactobacillus delbrueckii strain induces an increase in intestinal T-cells and granulocytes and modulates immune-related genes of larval Dicentrarchus labrax (L.). Fish Shellfish Immun 26(3):368–376. https://doi.org/10.1016/j.fsi.2008.10.008

    Article  CAS  Google Scholar 

  52. Dehghan M, Jafariyan H, Rezai MH, Amoozagar MA, Sahandi J (2011) Potential of the brine shrimp (Artemia urniana) enrichment with two species of Bacillus and yeast (Saccharomyces cerevisiae). World J Fish Marine Sci 3(6):523–528

    Google Scholar 

  53. Gatesoupe F-J (2008) Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments. J Mol Microbiol Biotechnol 14(1–3):107–114. https://doi.org/10.1159/000106089

    Article  CAS  PubMed  Google Scholar 

  54. Hajibeglou A, Sudagar M (2010) Effect of dietary supplementation with probiotic on reproductive performance of female livebearing ornamental fish. Res J Anim Sci 4(4):103–107

    Google Scholar 

  55. Dahlgren B (1980) The effects of three different dietary protein levels on the fecundity in the guppy, Poecilia reticulata (Peters). J Fish Biol 16(1):83–97. https://doi.org/10.1111/j.1095-8649.1980.tb03688.x

    Article  CAS  Google Scholar 

  56. Goldin BR, Gorbach SL (1992) Probiotics for humans. In: Probiotics. Springer, pp 355–376

  57. Avella MA, Place A, Du S-J, Williams E, Silvi S, Zohar Y, Carnevali O (2012) Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems. PLoS One 7(9):e45572. https://doi.org/10.1371/journal.pone.0045572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Munro P, Barbour A, Blrkbeck T (1994) Comparison of the gut bacterial flora of start-feeding larval turbot reared under different conditions. J Appl Microbiol 77(5):560–566. https://doi.org/10.1111/j.1365-2672.1994.tb04402.x

    Article  Google Scholar 

  59. Kennedy BS, Tucker JW Jr, Neidig CL, Vermeer GK, Cooper VR, Jarrell JL, Sennett DG (1998) Bacterial management strategies for stock enhancement of warmwater marine fish: a case study with common snook (Centropomus undecimalis). B Mar Sci 62(2):573–588

    Google Scholar 

  60. Wooster GA, Bowser PR, Brown SB, Fisher JP (2000) Remediation of Cayuga syndrome in landlocked Atlantic Salmon Salmo salar using egg and sac-fry bath treatments of thiamine-hydrochloride. J World Aquac Soc 31(2):149–157. https://doi.org/10.1111/j.1749-7345.2000.tb00348.x

    Article  Google Scholar 

  61. Hornung M, Miller L, Peterson R, Marcquenski S, Brown S (1998) Efficacy of various treatments conducted on Lake Michigan salmonid embryos in reducing early mortality syndrome. Early life stage mortality syndrome in fishes of the Great Lakes and Baltic Sea. In: McDonald G, Fitzsimons JD, Honeyfield DC (eds) Am Fish Soc. Bethesda. pp 124–134

  62. Vine NG, Leukes WD, Kaiser H (2006) Probiotics in marine larviculture. FEMS Microbiol Rev 30(3):404–427. https://doi.org/10.1111/j.1574-6976.2006.00017.x

    Article  CAS  PubMed  Google Scholar 

  63. Nadella RK, Prakash RR, Dash G, Ramanathan SK, Kuttanappilly LV, Mothadaka MP (2018) Histopathological changes in giant freshwater prawn Macrobrachium rosenbergii (de Man 1879) fed with probiotic Bacillus licheniformis upon challenge with Vibrio alginolyticus. Aquac Res 49(1):81–92. https://doi.org/10.1111/are.13436

    Article  CAS  Google Scholar 

  64. Gerard J, Lloyd R, Barsby T, Haden P, Kelly MT, Andersen RJ (1997) Massetolides A– H, antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats. J Nat Prod 60(3):223–229. https://doi.org/10.1021/np9606456

    Article  CAS  PubMed  Google Scholar 

  65. Jafaryan H, Mehdi TM, Mohammad MN (2010) The effects of probiotic bacillus for promotion of growth and feeding parameters in beluga (Huso huso) larvae via feeding by bioencapsulated Artemia. AACL Bioflux 3(4):273–280

    Google Scholar 

  66. Allam HYH (2007) Physiological effects of some additives on growth, blood constituents and immunity in Nile tilapia (Oreochromis niloticus). PhD thesis. Fac of Agric, Assiut Univ, Egypt

  67. Carvalho A, Escaffre A-M, Teles AO, Bergot P (1997) First feeding of common carp larvae on diets with high levels of protein hydrolysates. Aquac Int 5(4):361–367. https://doi.org/10.1023/A:1018368208323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrollah Ahmadifard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadifard, N., Rezaei Aminlooi, V., Tukmechi, A. et al. Evaluation of the Impacts of Long-Term Enriched Artemia with Bacillus subtilis on Growth Performance, Reproduction, Intestinal Microflora, and Resistance to Aeromonas hydrophila of Ornamental Fish Poecilia latipinna. Probiotics & Antimicro. Prot. 11, 957–965 (2019). https://doi.org/10.1007/s12602-018-9453-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-018-9453-4

Keywords

Navigation