Skip to main content
Log in

Roles of (Fe, Mn)3Al Precipitates and MBIP on the Hot Ductility Behavior of Fe–30Mn–9Al–0.9C Lightweight Steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the automotive industry, lightweight steel has received much attention because steel comprises a significant portion of a vehicle’s total weight. Fe–Mn–Al–C steel is a representative lightweight steel due to its high performance and low density. However, there is insufficient research into the welding characteristics of Fe–Mn–Al–C lightweight steels. In this study, hot ductility tests were conducted on austenitic Fe–30Mn–9Al–0.9C steel in order to understand the welding characteristics (cracking resistance) of the heat affected zone. During the on-heating thermal cycle, ductility was altered by a decrease in microband induced plasticity (MBIP) (softening) and an increase in dynamic recrystallization (DRX) (softening) as the temperature increased. Specifically, in the range of 773–1073 K, ductility was fairly degraded because neither MBIP nor DRX took place. During the on-cooling thermal cycle, ductility behavior was changed by both softening and hardening factors, including formation of brittle (Fe, Mn)3Al intermetallic compounds with grain growth and re-solidified grain boundaries. However, the hardening effect of precipitated κ-carbide was insignificant and might not play a significant role in the hot ductility behavior of the lightweight alloy used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Ritzkowski, R. Stegmann, Int. J. Greenh. Gas Control 1, 281–288 (2007)

    Article  Google Scholar 

  2. K. Kaygusuz, Renew. Sustain. Energy Rev. 13, 253–270 (2009)

    Article  Google Scholar 

  3. R. Roth, J. Clark, A. Kelkar, JOM 53, 28–32 (2001)

    Article  Google Scholar 

  4. R. Davies, G. Grant, M. Khaleel, M. Smith, H.E. Oliver, Metall. Mater. Trans. A 32, 275–283 (2001)

    Article  Google Scholar 

  5. R. Verma, P. Friedman, A. Ghosh, S. Kim, C. Kim, Metall. Mater. Trans. A 27, 1889–1898 (1996)

    Article  Google Scholar 

  6. M.K. Kulekci, Int. J. Adv. Manuf. Technol. 39, 851–865 (2008)

    Article  Google Scholar 

  7. H. Palaniswamy, G. Ngaile, T. Altan, J. Mater. Process. Technol. 146, 52–60 (2004)

    Article  Google Scholar 

  8. T. Barnes, I. Pashby, J. Mater. Process. Technol. 99, 62–71 (2000)

    Article  Google Scholar 

  9. W. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Mater. Sci. Eng. A 280, 37–49 (2000)

    Article  Google Scholar 

  10. C. Blawert, N. Hort, K. Kainer, Trans. Indian Inst. Met. 57, 397–408 (2004)

    Google Scholar 

  11. H. Kim, D.-W. Suh, N.J. Kim, Sci. Technol. Adv. Mater. 14, 014205 (2013)

    Article  Google Scholar 

  12. D. Raabe, H. Springer, I. Gutiérrez-Urrutia, F. Roters, M. Bausch, J.-B. Seol, M. Koyama, P.-P. Choi, K. Tsuzaki, JOM 66, 1845–1856 (2014)

    Article  Google Scholar 

  13. K. Choi, C.-H. Seo, H. Lee, S. Kim, J.H. Kwak, K.G. Chin, K.-T. Park, N.J. Kim, Scr. Mater. 63, 1028–1031 (2010)

    Article  Google Scholar 

  14. S.-H. Kim, H. Kim, N.J. Kim, Nature 518, 77–79 (2015)

    Article  Google Scholar 

  15. C.H. Chao, N.J. Ho, J. Mater. Sci. 27, 4139–4144 (1992)

    Article  Google Scholar 

  16. C.-P. Chou, C.-H. Lee, Scr. Metall. 23, 901–906 (1989)

    Article  Google Scholar 

  17. J. Moon, S.-J. Park, J. Weld. Join. 33, 31–34 (2015)

    Article  Google Scholar 

  18. B.K. Srivastava, S. Tewari, J. Prakash, Int. J. Eng. Sci. Technol. 2, 625–631 (2010)

    Google Scholar 

  19. J. Moon, C. Lee, Acta Mater. 57, 2311–2320 (2009)

    Article  Google Scholar 

  20. Y. Shi, Z. Han, J. Mater. Process. Technol. 207, 30–39 (2008)

    Article  Google Scholar 

  21. R. Thompson, S. Genculu, Weld. J. 62, 337s–345s (1983)

    Google Scholar 

  22. E.F. Nippes, W.F. Savage, Weld. J. 28, 534–546 (1949)

    Google Scholar 

  23. C.L. Lin, C.G. Chao, H.Y. Bor, T.F. Liu, Mater. Trans. 51, 1084–1088 (2010)

    Article  Google Scholar 

  24. J.D. Yoo, K.-T. Park, Mater. Sci. Eng. A 496, 417–424 (2008)

    Article  Google Scholar 

  25. K.-T. Park, G. Kim, S.K. Kim, S.W. Lee, S.W. Hwang, C.S. Lee, Met. Mater. Int. 16, 1–6 (2010)

    Article  Google Scholar 

  26. J. Yoo, S. Hwang, K.-T. Park, Metall. Mater. Trans. A 40, 1520–1523 (2009)

    Article  Google Scholar 

  27. S.-G. Hong, S.-B. Lee, J. Nucl. Mater. 340, 307–314 (2005)

    Article  Google Scholar 

  28. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater Sci. 60, 130–207 (2014)

    Article  Google Scholar 

  29. A. Gulyaev, E. Svistunova, Scr. Metall. Mater. 33, 1497–1503 (1995)

    Article  Google Scholar 

  30. I. Pestov, N. Leonova, A.Y. Maloletnev, M. Perkas, A. Sorokin, Met. Sci. Heat Treat. 32, 608–612 (1990)

    Article  Google Scholar 

  31. Z. Wang, Y. Zhou, Y. Xia, J. Mater. Sci. 32, 2387–2390 (1997)

    Article  Google Scholar 

  32. Y. Li, S. Gerasimov, U. Puckov, H. Ma, J. Wang, Mater. Res. Innov. 11, 133–136 (2007)

    Article  Google Scholar 

  33. A. Egbewande, H. Zhang, R. Sidhu, O. Ojo, Metall. Mater. Trans. A 40, 2694 (2009)

    Article  Google Scholar 

  34. J. Lippold, Weld. J. Res. Suppl. 62 1s–11s (1983)

    Google Scholar 

  35. C. Chao, T. Liu, Metall. Trans. A 24, 1957–1963 (1993)

    Article  Google Scholar 

  36. O. Acselrad, I. Kalashnikov, E. Silva, M.S. Khadyev, R. Simao, Met. Sci. Heat Treat. 48, 543–553 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Materials and Components Technology Development Program (10048157) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Jeong, S., Park, SJ. et al. Roles of (Fe, Mn)3Al Precipitates and MBIP on the Hot Ductility Behavior of Fe–30Mn–9Al–0.9C Lightweight Steels. Met. Mater. Int. 25, 1019–1026 (2019). https://doi.org/10.1007/s12540-019-00248-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00248-9

Keywords

Navigation