Skip to main content
Log in

Microstructure and Mechanical Properties of Austempered Medium-Carbon Spring Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Changes in microstructure and mechanical properties of medium-carbon spring steel during austempering were investigated. After austempering for 1 h at 290 °C or 330 °C, the bainite transformation stabilized austenite, and microstructure consisting of bainitic ferrite and austenite could be obtained after final cooling; the retained austenite fraction was smaller in the alloy austempered at 290 °C because carbon redistribution between bainitic ferrite and austenite slowed as the temperature decreased, and thereby gave persistent driving force for the bainite transformation. The products of tensile strength and reduction of area in the austempered alloy were much larger in the austempered steel than in quenched and tempered alloy, mainly because of significant increase in reduction of area in austempered alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.J. Matas, R.F. Hehemann, The structure of bainite in hypoeutectoid steels. Trans. Metall. Soc AIME 221(1), 179–185 (1961)

    Google Scholar 

  2. R.L. Houillier, G. Begin, A. Dube, Study of peculiarities of austenite during formation of bainite. Metall. Trans. 2(9), 2645–2653 (1971)

    Article  Google Scholar 

  3. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Design of novel high strength bainitic steels: part 1. Mater. Sci. Technol. 17(5), 512–516 (2001)

    Article  Google Scholar 

  4. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Design of novel high strength bainitic steels: part 2. Mater. Sci. Technol. 17(5), 517–522 (2001)

    Article  Google Scholar 

  5. F. Perrad, C. Mendibide, N. Yoshihara, Y. Namimura and N. Ibaraki, High strength spring steels with improved ductility and corrosion resistance. International Conference on Steels in Cars and Trucks, pp. 106–113 (2008)

  6. F. Perrad, F. Charvieux and J. Languillaume, A new spring steel with improved ductility dedicated for high strength parabolic leaf springs. 2nd International Conference Super-High Strength Steels, Peschiera del Garda (2010)

  7. T. Fukuzumi, S. Komazaki, T. Misawa, Hydrogen embrittlement and corrosion fatigue caused by pitting corrosion of spring steels for automobile with improved pitting corrosion resistance by alloying elements and chemical passivation treatment. J. Iron Steel Inst. Jpn. 88(2), 81–87 (2002)

    Article  Google Scholar 

  8. G.E. Hollox, R.A. Hobbs, J.M. Hampshire, Lower bainite bearings for adverse environments. Wear 68(2), 229–240 (1981)

    Article  Google Scholar 

  9. F.C. Akbasoglu, D.V. Edmonds, Rolling contact fatigue and fatigue crack propagation in 1C-1.5 Cr bearing steel in the bainitic condition. Metall. Trans. A 21(3), 889–893 (1990)

    Article  Google Scholar 

  10. N. Luzginova, L. Zhao, J. Sietsma, Evolution and thermal stability of retained austenite in SAE 52100 bainitic steel. Mater. Sci. Eng. A 448(1), 104–110 (2007)

    Article  Google Scholar 

  11. J. Chakraborty, D. Bhattacharjee, I. Manna, Austempering of bearing steel for improved mechanical properties. Scr. Mater. 59(2), 247–250 (2008)

    Article  Google Scholar 

  12. J. Chakraborty, D. Bhattacharjee, I. Manna, Development of ultrafine bainite + martensite duplex microstructure in SAE 52100 bearing steel by prior cold deformation. Scr. Mater. 61(6), 604–607 (2009)

    Article  Google Scholar 

  13. W.F. Smith, Structure and Properties of Engineering Alloys (McGraw-Hill, New York, 1993), p. 75

    Google Scholar 

  14. J.L. Paez, F. Fuentes, A. Battegliese, Isothermal treatment of SAE92XX type high silicon steels. Rev. Metal. 32(1), 3–9 (1996)

    Article  Google Scholar 

  15. J.A. Cruz Jr., T.F.M. Rodrigues, V.D.C. Viana, H. Abreu, D.B. Santos, Influence of temperature and time of austempering treatment on mechanical properties of SAE 9254 commercial steel. Steel Res. Int. 83(1), 22–31 (2012)

    Article  Google Scholar 

  16. J.A. Cruz Jr., D.B. Santos, Effect of tempering temperature on isothermal decomposition product formed below Ms. J. Mater. Res. Technol. 2(2), 93–99 (2013)

    Article  Google Scholar 

  17. H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. A 22(1), 151–152 (1967)

    Article  Google Scholar 

  18. ASTM Standard E8/E8M (2004)

  19. W.H. Bragg, W.L. Bragg, The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 88, 605, pp. 428–438 (1913)

  20. S.H. Kim, D.H. Kim, K.C. Hwang, S.B. Lee, S.K. Lee, H.U. Hong, D.W. Suh, Heat treatment response of TiC-reinforced steel matrix composite. Met. Mater. Int. 22(5), 935–941 (2016)

    Article  Google Scholar 

  21. N. Ridley, H. Stuart, L. Zwell, Lattice parameters of Fe-C austenites at room temperature. Trans. Met. Soc. AIME 245(8), 1834–1836 (1969)

    Google Scholar 

  22. C.S. Roberts, Effect of carbon on the volume fractions and lattice parameters of retained austenite and martensite. Trans. AIME 197(2), 203–204 (1953)

    Google Scholar 

  23. J.H. Jang, H.K.D.H. Bhadeshia, D.W. Suh, Solubility of carbon in tetragonal ferrite in equilibrium with austenite. Scr. Mater. 68(3), 195–198 (2013)

    Article  Google Scholar 

  24. B.C. De Cooman, K. Findley, Introduction to the Mechanical Behavior of Steel (AIST, Warrendale, 2016), pp. 209–215

    Google Scholar 

  25. C. Garcia-Mateo, F.G. Caballero, Ultra-high-strength bainitic steels. ISIJ 45(11), 1736–1740 (2005)

    Article  Google Scholar 

  26. A. Fallahi, Microstructure-properties correlation of dual phase steels produced by controlled rolling process. Mater. Sci. Technol. 18(5), 451–454 (2002)

    Google Scholar 

  27. N. Fonstein, M. Kapustin, N. Pottore, I. Gupta, O. Yakubovsky, Factors that determine the level of the yield strength and the return of the yield-point elongation in low-alloy ferrite-martensite steels. Phys. Met. Metallogr. 104(3), 315–323 (2007)

    Article  Google Scholar 

  28. G.E. Dieter, Mechanical Metallurgy (McGraw-Hill, New York, 1976), p. 343

    Google Scholar 

  29. N. Fonstein, Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing, and Properties (Springer, Berlin, 2015), pp. 97–108

    Book  Google Scholar 

  30. W. Sha, Steels: From Materials Science to Structural Engineering (Springer, Berlin, 2016), pp. 27–58

    Google Scholar 

  31. H.K.D.H. Bhadeshia, D.V. Edmonds, Bainite in silicon steels: new composition–property approach part 1. Met. Sci. 17(9), 411–419 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Woo Suh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.H., Kim, KH., Bae, CM. et al. Microstructure and Mechanical Properties of Austempered Medium-Carbon Spring Steel. Met. Mater. Int. 24, 693–701 (2018). https://doi.org/10.1007/s12540-018-0085-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0085-8

Keywords

Navigation