Skip to main content

Advertisement

Log in

High-temperature stability of retained austenite and plastic deformation mechanism of ultra-fine bainitic steel isothermally treated below Ms

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The mechanical properties of the sample and the stability of retained austenite were studied by designing two kinds of ultra-fine bainitic steel with different heat treatment methods (austempering above and below Ms (martensite start temperature)), which were subjected to tensile tests at 20 and 450 °C, respectively. The results show that compared to room temperature (20 °C) tensile properties, the uniform elongation of the sample at high temperature (450 °C) significantly decreased. Specifically, the uniform elongation of the sample austempered above Ms decreased from 8.0% to 3.5%, and the sample austempered below Ms decreased from 10.9% to 3.1%. Additionally, the tensile strength of the sample austempered above Ms significantly decreased (from 1281 to 912 MPa), and the sample austempered below Ms slightly decreased (from 1010 to 974 MPa). This was due to the high carbon content (1.60 wt.%), high mechanical stability, low thermal stability for the retained austenite of the sample austempered below Ms. Besides, the retained austenite decomposed at high temperatures, the carbon content and transformation driving force were significantly reduced, the transformation rate increased, and the phase transformation content reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Z. Yang, F. Zhang, ISIJ Int. 60 (2020) 18–30.

    Article  Google Scholar 

  2. T. Sourmail, F.G. Caballero, C. Garcia-Mateo, V. Smanio, C. Ziegler, M. Kuntz, R. Elvira, A. Leiro, E. Vuorinen, T. Teeri, Mater. Sci. Technol. 29 (2013) 1166–1173.

    Article  Google Scholar 

  3. A. Królicka, A.M. Żak, F.G. Caballero, Mater. Des. 211 (2021) 110143.

    Article  Google Scholar 

  4. M. Kuntz, C. Garcia-Mateo, F.G. Caballero, V. Ruiz-Jimenez, T. Sourmail, S. Lille, G. Wicks, S. Allain, S. Denis, G. Geandier, in: European Commission Directorate G-Industrial Technologies, Unit, G.5-Research Fund for Coal and Steel, 2020, pp. 754070.

  5. K. Wang, X. Gui, B. Bai, G. Gao, Mater. Sci. Eng. A 850 (2022) 143525.

    Article  Google Scholar 

  6. X. Wang, X. Zhang, Q. Fang, H. Ma, R. Zhang, F. Liu, Z. Yang, F. Zhang, Mater. Sci. Eng. A 856 (2022) 143958.

    Article  Google Scholar 

  7. X. Long, G. Zhao, F. Zhang, S. Xu, Z. Yang, G. Du, R. Branco, Mater. Sci. Eng. A 775 (2020) 138964.

    Article  Google Scholar 

  8. G.M.A.M. El Fallah, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 746 (2019) 145–153.

    Article  Google Scholar 

  9. R. Kumar, R.K. Dwivedi, S. Ahmed, Silicon 13 (2021) 1249–1259.

    Article  Google Scholar 

  10. K. Wang, F. Hu, S. Zhou, O. Isayev, S. Yershov, Z. Zhang, K. Wu, Mater. Lett. 324 (2022) 132517.

    Article  Google Scholar 

  11. F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, T. Antretter, Int. J. Plast. 16 (2000) 723–748.

    Article  Google Scholar 

  12. W. Bleck, X. Guo, Y. Ma, Steel Res. Int. 88 (2017) 1700218.

    Article  Google Scholar 

  13. H.K.D.H. Bhadeshia, IOM communications, London, UK, 2015.

  14. E.V. Pereloma, I.B. Timokhina, M.K. Miller, P.D. Hodgson, Acta Mater. 55 (2007) 2587–2598.

    Article  Google Scholar 

  15. I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Metall. Mater. Trans. A 35 (2004) 2331–2341.

    Article  Google Scholar 

  16. D.P. Koistinen, R.E. Marburger, Acta Metall. 7 (1959) 59–60.

    Article  Google Scholar 

  17. C.K. Syn, B. Fultz, J.W. Morris, Metall. Trans. A 9 (1978) 1635–1640.

    Article  Google Scholar 

  18. M. Izumiyama, M. Tsuchiya, Y. Imai, J. Jpn. Inst. Met. Mater. 34 (1970) 291–295.

    Article  Google Scholar 

  19. J. Huang, Z. Xu, Mater. Sci. Eng. A 438–440 (2006) 254–257.

    Article  Google Scholar 

  20. P.J. Brofman, G.S. Ansell, Metall. Trans. A 14 (1983) 1929–1931.

    Article  Google Scholar 

  21. S. Lee, S.J. Lee, B.C. De Cooman, Scripta Mater. 65 (2011) 225–228.

    Article  Google Scholar 

  22. A. Eres-Castellanos, F.G. Caballero, C. Garcia-Mateo, Acta Mater. 189 (2020) 60–72.

    Article  Google Scholar 

  23. Y. Mine, K. Hirashita, H. Takashima, M. Matsuda, K. Takashima, Mater. Sci. Eng. A 560 (2013) 535–544.

    Article  Google Scholar 

  24. B.B. He, Materials 13 (2020) E3400.

    Article  Google Scholar 

  25. Y. Li, D.S. Martín, J.L. Wang, C.C. Wang, W. Xu, J. Mater. Sci. Technol. 91 (2021) 200–214.

    Article  Google Scholar 

  26. V. Ruiz-Jimenez, M. Kuntz, T. Sourmail, F.G. Caballero, J.A. Jimenez, C. Garcia-Mateo, Appl. Sci. 10 (2020) 8901.

    Article  Google Scholar 

  27. C. Garcia-Mateo, M. Peet, F.G. Caballero, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 20 (2004) 814–818.

    Article  Google Scholar 

  28. A. Saha Podder, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 527 (2010) 2121–2128.

    Article  Google Scholar 

  29. A. Saha Podder, Tempering of a mixture of bainite and retained austenite, University of Cambridge, Cambridge, UK, 2011.

  30. I.B. Timokhina, H. Beladi, X.Y. Xiong, Y. Adachi, P.D. Hodgson, Acta Mater. 59 (2011) 5511–5522.

    Article  Google Scholar 

  31. F.G. Caballero, M.K. Miller, S.S. Babu, C. Garcia-Mateo, Acta Mater. 55 (2007) 381–390.

    Article  Google Scholar 

  32. F.G. Caballero, M.K. Miller, C. Garcia-Mateo, Acta Mater. 58 (2010) 2338–2343.

    Article  Google Scholar 

  33. S.B. Zhou, C.Y. Hu, F. Hu, L. Cheng, O. Isayev, S. Yershov, H.J. Xiang, K.M. Wu, Mater. Sci. Eng. A 846 (2022) 143175.

    Article  Google Scholar 

  34. S.B. Zhou, F. Hu, W. Zhou, L. Cheng, C.Y. Hu, K.M. Wu, J. Mater. Res. Technol. 14 (2021) 1021–1034.

    Article  Google Scholar 

  35. T. He, L. Wang, F. Hu, W. Zhou, Z. Zhang, K. Wu, J. Mater. Res. Technol. 22 (2023) 2690–2703.

    Article  Google Scholar 

  36. A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, D.K. Matlock, Scripta Mater. 50 (2004) 1445–1449.

    Article  Google Scholar 

  37. S.W. Young, M. Sato, K. Yamamitsu, Y. Shimada, Y. Zhang, G. Miyamoto, T. Furuhara, Acta Mater. 206 (2021) 116612.

    Article  Google Scholar 

  38. X.P. Yu, H.B. Wu, Y. Gu, R. Yuan, Y.Y. Zhang, Y.H. Feng, J. Iron Steel Res. Int. 29 (2022) 647–654.

    Article  Google Scholar 

  39. F. Zhu, F. Chai, X.B. Luo, Z.Y. Zhang, C.F. Yang, J. Iron Steel Res. Int. 28 (2021) 464–478.

    Article  Google Scholar 

  40. K. Chen, H.B. Li, Z.H. Jiang, F.B. Liu, C.P. Kang, X.D. Ma, J. Mater. Sci. Technol. 72 (2021) 81–92.

    Article  Google Scholar 

  41. M.S. Baek, K.S. Kim, T.W. Park, J. Ham, K.A. Lee, Mater. Sci. Eng. A 785 (2020) 139375.

    Article  Google Scholar 

  42. S. Breumier, T. Martinez Ostormujof, B. Frincu, N. Gey, A. Couturier, N. Loukachenko, P.E. Aba-perea, L. Germain, Mater. Charact. 186 (2022) 111805.

    Article  Google Scholar 

  43. S. Das, S. Sinha, A. Lodh, A.R. Chintha, M. Krugla, A. Haldar, Mater. Sci. Technol. 33 (2017) 1026–1037.

    Article  Google Scholar 

  44. Y.I. Son, Y.K. Lee, K.T. Park, C.S. Lee, D.H. Shin, Acta Mater. 53 (2005) 3125–3134.

    Article  Google Scholar 

  45. S.M. Hasan, A. Mandal, S.B. Singh, D. Chakrabarti, Mater. Sci. Eng. A 751 (2019) 142–153.

    Article  Google Scholar 

  46. J. Hu, X. Li, Q. Meng, L. Wang, Y. Li, W. Xu, Mater. Sci. Eng. A 855 (2022) 143904.

    Article  Google Scholar 

  47. M. Mukherjee, S.B. Singh, O.N. Mohanty, Metall. Mater. Trans. A 39 (2008) 2319–2328.

    Article  Google Scholar 

  48. J. Wang, S. Zwaag, Metall. Mater. Trans. A 32 (2001) 1527–1539.

    Article  Google Scholar 

  49. K. Ishida, Scripta Metall. 11 (1977) 237–242.

    Article  Google Scholar 

  50. A. Perlade, O. Bouaziz, Q. Furnémont, Mater. Sci. Eng. A 356 (2003) 145–152.

    Article  Google Scholar 

  51. L. Kaufman, M. Cohen, Prog. Met. Phys. 7 (1958) 165–246.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (52071238), Leading Innovation and Entrepreneurship Team in Zhejiang Province (2021R01020), the Key Research and Development Program of Hubei Province (2021BAA057), Science and Technology Program of Guangxi Province (AA22068080), and the 111 Project. The authors show thanks for the technical support provided by Analysis and Test Center of Wuhan University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Hu.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Tt., Hu, F., Wang, K. et al. High-temperature stability of retained austenite and plastic deformation mechanism of ultra-fine bainitic steel isothermally treated below Ms. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-023-01151-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-023-01151-9

Keywords

Navigation