Skip to main content
Log in

Effect of Ti content on creep properties of Ni-base single crystal superalloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect of Ti content on the creep properties and microstructures of experimental Ni-base single crystal superalloys has been investigated. The experimental alloys were designed to provide better high temperature properties than the commercial single crystal alloy CMSX-4. The creep properties of the experimental alloys, Alloy 2 and Alloy 3, were superior to those of CMSX-4. Alloy 3 showed a longer creep life than Alloy 2 at 900 °C and 950 °C, while it has similar creep life with Alloy 2 at 982 °C. Transmission electron microscopy micrographs of the experimental alloys after the creep test showed distinct deformation features as a function of temperature and Ti content. The dissociation of dislocations into partial dislocations with stacking faults in Alloy 3 was found to improve resistance to creep deformation at 950 °C. The effect of Ti on the creep deformation mechanism was not evident at 982 °C, which resulted in similar creep properties in both experimental alloys. The transition of the γ′ cutting mechanism from dislocations coupled with stacking faults to anti-phase boundary coupled pairs occurred both in Alloy 2 and Alloy 3. However, the transition temperature was higher in Alloy 3 than in Alloy 2 because of the difference in Ti contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Gu, C. H. Sung, J. H. Shin, S. M. Seo, and J. H. Lee, Korean J. Met. Mater. 54, 261 (2016).

    Article  Google Scholar 

  2. J. S. Lee, S. H. Kwon, B. G. Yoon, B. M. Chang, Y. G. Jung, and J. H. Lee, Korean J. Met. Mater. 54, 838 (2016).

    Article  Google Scholar 

  3. R. Hashizume, A. Yoshinari, T. Kiyono, Y. Murata, and M. Morinaga, Superalloys 2004 (eds. K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra, et al.), p. 53, TMS, Warrendale, USA (2000).

  4. Y. Koizumi, T. Kobayashi, T. Yokogawa, J. Zhang, M. Osawa, M. Arai, et al. Superalloys 2004 (eds. K. A. Green et al.), p. 35, TMS, Warrendale, USA (2000).

  5. M. Zietara, S. Neumeier, M. Göken, and A. Czyrska-Filemonowicz, Met. Mater. Int. 23, 126 (2017).

    Article  Google Scholar 

  6. T. Kobayashi, Y. Koizumi, H. Harada, and T. Murakumo, Acta Mater. 52, 3737 (2004).

    Article  Google Scholar 

  7. J. X. Zhang, T. Murakumo, H. Harada, and Y. Koizumi, Scripta Mater. 48, 287 (2003).

    Article  Google Scholar 

  8. R. A. Hobbs, L. Zhang, C. M. F. Rae, S. Tin, A. K. Koul, and G. H. Gessinger, Mat. Sci. Eng. A 489, 65 (2008).

    Article  Google Scholar 

  9. C. Tian, G. Han, C. Cui, and X. Sun, Mater. Design 64, 316 (2014).

    Article  Google Scholar 

  10. J. H. Zhang, T. Jin, Y. B. Xu, Z. Q. Hu, and X. Wu, J. Mater. Sci. Tech. 18, 159 (2002).

  11. S. Ochiai, Y. Oya, and T. Suzuki, Acta Metall. Mater. 32, 289 (1984).

    Article  Google Scholar 

  12. G. N. Maniar and J. E. Bridge, Metallography 5, 91 (1972).

    Article  Google Scholar 

  13. Y. F. Wen, J. Sun, and J. Huang, T. Nonferr. Metal. Soc. 22, 661 (2012).

  14. H. P. Wang, M. Sluiter, and Y. Kawazoe, Mater. T. JIM 40, 1301 (1999).

    Article  Google Scholar 

  15. X. P. Tan, J. L. Liu, T. Jin, Z. Q. Hu, H. U. Hong, C. Y. Jo, et al. Mat. Sci. Eng. A 528, 8381 (2011).

    Article  Google Scholar 

  16. G. R. Leverant and B. H. Kear, Metall. Mater. Trans. B 1, 491 (1970).

    Article  Google Scholar 

  17. C. M. F. Rae, N. Matan, and R. C. Reed, Mat. Sci. Eng. A 300, 125 (2001).

    Article  Google Scholar 

  18. T. Link and M. Feller-Kniepmeier, Metall. Mater. Trans. A 23, 99 (1992).

    Article  Google Scholar 

  19. R. C. Reed, The Superalloys, pp.65–73, Cambridge University Press, Cambridge, UK (2006).

    Book  Google Scholar 

  20. W. W. Milligan and S. D. Antolovich, Metall. Mater. Trans. A 22, 2309 (1991).

    Article  Google Scholar 

  21. L. Remy and A. Pineau, Mater. Sci. Eng. 36, 47 (1978).

    Article  Google Scholar 

  22. S. Tian, B. Qian, Y. Su, H. Yu, and X. Yu, Mater. Sci. Forum 706-709, 2474 (2012).

    Article  Google Scholar 

  23. T. Kruml, B. Viguier, J. Bonneville, and J. L. Martin, Mat. Sci. Eng. A 234-236, 755 (1997).

    Article  Google Scholar 

  24. J. S. Huo, J. T. Gou, L. Z. Zhou, X. Z. Qin, and G. S. Li, J. Mater. Eng. Perform. 16, 55 (2007).

    Article  Google Scholar 

  25. G. Bruno and H. C. Pinto, Superalloys 2004 (eds. K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra, et al.), p. 837, TMS, Warrendale, USA (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baig Gyu Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, B.G., Kim, I.S., Hong, H.U. et al. Effect of Ti content on creep properties of Ni-base single crystal superalloys. Met. Mater. Int. 23, 877–883 (2017). https://doi.org/10.1007/s12540-017-7089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7089-7

Keywords

Navigation