Skip to main content
Log in

Fabrication of nanozyme@DNA hydrogel and its application in biomedical analysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanozymes have received great attention owing to the advantages of easy preparation and low cost. Unlike natural enzymes that readily adapt to physiological environments, artificial nanozymes are apt to passivate in complex clinical samples (e.g., serum), which may damage the catalytic capability and consequently limit the application in biomedical analysis. To conquer this problem, in this study, we fabricated novel nanozyme@DNA hydrogel architecture by incorporating nanozymes into a pure DNA hydrogel. Gold nanoparticles (AuNPs) were adopted as a model nanozyme. Results indicate that AuNPs incorporated in the DNA hydrogel retain their catalytic capability in serum as they are protected by the hydrogel, whereas AuNPs alone totally lose the catalytic capability in serum. The detection of hydrogen peroxide and glucose in serum based on the catalysis of the AuNPs@DNA hydrogel was achieved. The detection limit of each reaches 1.7 and 38 μM, respectively, which is equal to the value obtained using natural enzymes. Besides the mechanisms, some other advantages, such as recyclability and availability, have also been explored. This nanozyme@DNA hydrogel architecture may have a great potential for the utilization of nanozymes as well as the application of nanozymes for biomedical analysis in complex physiological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    Article  Google Scholar 

  2. Huang, Y. Y.; Liu, Z.; Liu, C. Q.; Ju, E. G.; Zhang, Y.; Ren, J. S.; Qu, X. G. Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem., Int. Ed. 2016, 55, 6646–6650.

    Article  Google Scholar 

  3. Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41–60.

    Article  Google Scholar 

  4. Lin, Y. H.; Ren, J. S.; Qu, X. G. Nano-gold as artificial enzymes: Hidden talents. Adv. Mater. 2014, 26, 4200–4217.

    Article  Google Scholar 

  5. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  Google Scholar 

  6. Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem., Int. Ed. 2009, 48, 2308–2312.

    Article  Google Scholar 

  7. André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schröder, H. C.; Müller, W. E. G.; Tremel, W. V2O5 nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater. 2011, 21, 501–509.

    Article  Google Scholar 

  8. Yin, J. F.; Cao, H. Q.; Lu, Y. X. Self-assembly into magnetic Co3O4 complex nanostructures as peroxidase. J. Mater. Chem. 2012, 22, 527–534.

    Article  Google Scholar 

  9. Zhang, L. L.; Han, L.; Hu, P.; Wang, L.; Dong, S. J. TiO2 nanotube arrays: Intrinsic peroxidase mimetics. Chem. Commun. 2013, 49, 10480–10482.

    Article  Google Scholar 

  10. Liu, B. W.; Huang, Z. C.; Liu, J. W. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: Rivaling protein enzymes and ultrasensitive F−detection. Nanoscale 2016, 8, 13562–13567.

    Article  Google Scholar 

  11. Liu, B. W.; Sun, Z. Y.; Huang, P. J. J.; Liu, J. W. Hydrogen peroxide displacing DNA from nanoceria: Mechanism and detection of glucose in serum. J. Am. Chem. Soc. 2015, 137, 1290–1295.

    Article  Google Scholar 

  12. Gao, N.; Dong, K.; Zhao, A. D.; Sun, H. J.; Wang, Y.; Ren, J. S.; Qu, X. G. Polyoxometalate-based nanozyme: Design of a multifunctional enzyme for multi-faceted treatment of Alzheimer's disease. Nano Res. 2016, 9, 1079–1090.

    Article  Google Scholar 

  13. Shcherbakov, A. B.; Zholobak, N. M.; Baranchikov, A. E.; Ryabova, A. V.; Ivanov, V. K. Cerium fluoride nanoparticles protect cells against oxidative stress. Mater. Sci. Eng. C 2015, 50, 151–159.

    Article  Google Scholar 

  14. Charoenkitamorn, K.; Chailapakul, O.; Siangproh, W. Development of gold nanoparticles modified screen-printed carbon electrode for the analysis of thiram, disulfiram and their derivative in food using ultra-high performance liquid chromatography. Talanta 2015, 132, 416–423.

    Article  Google Scholar 

  15. Weerathunge, P.; Ramanathan, R.; Shukla, R.; Sharma, T. K.; Bansal, V. Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal. Chem. 2014, 86, 11937–11941.

    Article  Google Scholar 

  16. Mao, Z. G.; Qing, Z. H.; Qing, T. P.; Xu, F. Z.; Wen, L.; He, X. X.; He, D. G.; Shi, H.; Wang, K. M. Poly(thymine)- templated copper nanoparticles as a fluorescent indicator for hydrogen peroxide and oxidase-based biosensing. Anal. Chem. 2015, 87, 7454–7460.

    Article  Google Scholar 

  17. Kim, M. I.; Cho, D.; Park, H. G. Colorimetric quantification of glucose and cholesterol in human blood using a nanocomposite entrapping magnetic nanoparticles and oxidases. J. Nanosci. Nanotechnol. 2015, 15, 7955–7961.

    Article  Google Scholar 

  18. He, S. B.; Wu, G. W.; Deng, H. H.; Liu, A. L.; Lin, X. H.; Xia, X. H.; Chen, W. Choline and acetylcholine detection based on peroxidase-like activity and protein antifouling property of platinum nanoparticles in bovine serum albumin scaffold. Biosens. Bioelectron. 2014, 62, 331–336.

    Article  Google Scholar 

  19. Zhu, C. D.; Zheng, Q.; Wang, L. X.; Xu, H. F.; Tong, J. L.; Zhang, Q. A.; Wan, Y.; Wu, J. Q. Synthesis of novel galactose functionalized gold nanoparticles and its radiosensitizing mechanism. J. Nanobiotechnol. 2015, 13, 67.

    Article  Google Scholar 

  20. Villalonga, R.; Díez, P.; Eguílaz, M.; Martínez, P.; Pingarrón, J. M. Supramolecular immobilization of xanthine oxidase on electropolymerized matrix of functionalized hybrid gold nanoparticles/single-walled carbon nanotubes for the preparation of electrochemical biosensors. ACS Appl. Mater. Interfaces 2012, 4, 4312–4319.

    Article  Google Scholar 

  21. Haider, W.; Hayat, A.; Raza, Y.; Chaudhry, A. A.; Rehman, I.; Marty, J. L. Gold nanoparticle decorated single walled carbon nanotube nanocomposite with synergistic peroxidase like activity for D-alanine detection. RSC Adv. 2015, 5, 24853–24858.

    Article  Google Scholar 

  22. Heo, J. H.; Cho, H. H.; Lee, J. H. Surfactant-free nanoparticle-DNA complexes with ultrahigh stability against salt for environmental and biological sensing. Analyst 2014, 139, 5936–5944.

    Article  Google Scholar 

  23. Zhu, X. L.; Shi, H.; Shen, Y. L; Zhang, B.; Zhao, J.; Li, G. X. A green method of staining DNA in polyacrylamide gel electrophoresis based on fluorescent copper nanoclusters synthesized in situ. Nano Res. 2015, 8, 2714–2720.

    Article  Google Scholar 

  24. Violi, I. L.; Zelcer, A.; Bruno, M. M.; Luca, V.; Soer-Illia, G. J. A. A. Gold nanoparticles supported in zirconia-ceria mesoporous thin films: A highly active reusable heterogeneous nanocatalyst. ACS Appl. Mater. Interfaces 2015, 7, 1114–1121.

    Article  Google Scholar 

  25. Zhu, X. L.; Liu, M.; Zhang, H. H.; Wang, H. Y.; Li, G. X. A chemical approach to accurately characterize the coverage rate of gold nanoparticles. J. Nanopart. Res. 2013, 15, 1900.

    Article  Google Scholar 

  26. Zhang, S. T.; Li, H.; Wang, Z. Y.; Liu, J.; Zhang, H. L.; Wang, B. D.; Yang, Z. Y. A strongly coupled Au/Fe3O4/GO hybrid material with enhanced nanozyme activity for highly sensitive colorimetric detection, and rapid and efficient removal of Hg2+ in aqueous solutions. Nanoscale 2015, 7, 8495–8502.

    Article  Google Scholar 

  27. Sato, K.; Hosokawa, K.; Maeda, M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc. 2003, 125, 8102–8103.

    Article  Google Scholar 

  28. Myers, V. S.; Weir, M. G.; Carino, E. V.; Yancey, D. F.; Pande, S.; Crooks, R. M. Dendrimer-encapsulated nanoparticles: New synthetic and characterization methods and catalytic applications. Chem. Sci. 2011, 2, 1632–1646.

    Article  Google Scholar 

  29. Kainz, Q. M.; Reiser, O. Polymer- and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents. Acc. Chem. Res. 2014, 47, 667–677.

    Article  Google Scholar 

  30. Hong, R. Y.; Li, J. H.; Chen, L. L.; Liu, D. Q.; Li, H. Z.; Zheng, Y.; Ding, J. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol. 2009, 189, 426–432.

    Article  Google Scholar 

  31. Li, J.; Fan, C. H.; Pei, H.; Shi, J. Y.; Huang, Q. Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv. Mater. 2013, 25, 4386–4396.

    Article  Google Scholar 

  32. Caliari, S. R.; Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 2016, 13, 405–414.

    Article  Google Scholar 

  33. Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Delivery Rev. 2012, 64, 18–23.

    Article  Google Scholar 

  34. Annabi, N.; Tamayol, A.; Uquillas, J. A.; Akbari, M.; Bertassoni, L. E.; Cha, C. Y.; Camci-Unal, G.; Dokmeci, M. R.; Peppas, N. A.; Khademhosseini, A. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv. Mater. 2014, 26, 85–124.

    Article  Google Scholar 

  35. Comotti, M.; Della Pina, C.; Matarrese, R.; Rossi, M. The catalytic activity of “naked” gold particles. Angew. Chem., Int. Ed. 2004, 43, 5812–5815.

    Article  Google Scholar 

  36. Luo, W. J.; Zhu, C. F.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C. H. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 2010, 4, 7451–7458.

    Article  Google Scholar 

  37. Um, S. H.; Lee, J. B.; Park, N.; Kwon, S. Y.; Umbach, C. C.; Luo, D. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 2006, 5, 797–801.

    Article  Google Scholar 

  38. Lee, J. B.; Peng, S. M.; Yang, D. Y.; Roh, Y. H.; Funabashi, H.; Park, N.; Rice, E. J.; Chen, L. W.; Long, R.; Wu, M. M. et al. A mechanical metamaterial made from a DNA hydrogel. Nat. Nanotechnol. 2012, 7, 816–820.

    Article  Google Scholar 

  39. Lin, T. R.; Zhong, L. S.; Guo, L. Q.; Fu, F. F.; Chen, G. N. Seeing diabetes: Visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 2014, 6, 11856–11862.

    Article  Google Scholar 

  40. Lu, N. H.; Zhang, Y.; Gao, Z. H. Nitrite–glucose–glucose oxidase system directly induces rat heart homogenate oxidation and tyrosine nitration: Effects of some flavonoids. Toxicol. In Vitro 2009, 23, 627–633.

    Article  Google Scholar 

  41. Wang, C. I.; Chen, W. T.; Chang, H. T. Enzyme mimics of Au/Ag nanoparticles for fluorescent detection of acetylcholine. Anal. Chem. 2012, 84, 9706–9712.

    Article  Google Scholar 

  42. Zhu, X. L.; Zhao, J.; Wu, Y.; Shen, Z. M.; Li, G. X. Fabrication of a highly sensitive aptasensor for potassium with a nicking endonuclease-assisted signal amplification strategy. Anal. Chem. 2011, 83, 4085–4089.

    Article  Google Scholar 

  43. He, W. W.; Liu, Y.; Yuan, J. S.; Yin, J. J.; Wu, X. C.; Hu, X. N.; Zhang, K.; Liu, J. B.; Chen, C. Y.; Ji, Y. L. et al. Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 2011, 32, 1139–1147.

    Article  Google Scholar 

  44. Bindhu, L. V.; Abraham, T. E. Preparation and kinetic studies of surfactant–horseradish peroxidase ion paired complex in organic media. Biochem. Eng. J. 2003, 15, 47–57.

    Article  Google Scholar 

  45. Choi, M. M. F.; Yiu, T. P. Immobilization of beef liver catalase on eggshell membrane for fabrication of hydrogen peroxide biosensor. Enzyme Microb. Technol. 2004, 34, 41–47.

    Article  Google Scholar 

  46. Kafi, A. K. M.; Wu, G. S.; Chen, A. C. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens. Bioelectron. 2008, 24, 566–571.

    Article  Google Scholar 

  47. Su, G.; Wei, Y. B.; Guo, M. L. Direct colorimetric detection of hydrogen peroxide using 4-nitrophenyl boronic acid or its pinacol ester. Am. J. Anal. Chem. 2011, 2, 879–884.

    Article  Google Scholar 

  48. Kimberly, M. M.; Vesper, H. W.; Caudill, S. P.; Ethridge, S. F.; Archibold, E.; Porter, K. H.; Myersa, G. L. Variability among five over-the-counter blood glucose monitors. Clin. Chim. Acta 2006, 364, 292–297.

    Article  Google Scholar 

  49. Zhu, W. J.; Feng, D. Q.; Chen, M.; Chen, Z. D.; Zhu, R.; Fang, H. L.; Wang, W. Bienzyme colorimetric detection of glucose with self-calibration based on tree-shaped paper strip. Sens. Actuators B 2014, 190, 414–418.

    Article  Google Scholar 

  50. Kang, X. H.; Wang, J.; Wu, H.; Aksay, I. A.; Liu, J.; Lin, Y. H. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron. 2009, 25, 901–905.

    Article  Google Scholar 

  51. Xu, X. W.; Yang, X. R. Facile colorimetric detection of glucose based on an organic Fenton reaction. Anal. Methods 2011, 3, 1056–1059.

    Article  Google Scholar 

  52. Che, Y. X.; Zinchenko, A; Murata, S. Control of a catalytic activity of gold nanoparticles embedded in DNA hydrogel by swelling/shrinking the hydrogel’s matrix. J. Colloid Interface Sci. 2015, 445, 364–370.

    Article  Google Scholar 

  53. Liu, B. W.; Liu, J. W. Accelerating peroxidase mimicking nanozymes using DNA. Nanoscale 2015, 7, 13831–13835.

    Article  Google Scholar 

  54. Pautler, R.; Kelly, E. Y.; Huang, P. J. J.; Cao, J.; Liu, B. W.; Liu, J. W. Attaching DNA to nanoceria: Regulating oxidase activity and fluorescence quenching. ACS Appl. Mater. Interfaces 2013, 5, 6820−6825.

    Article  Google Scholar 

  55. Liu, J. W. Adsorption of DNA onto gold nanoparticles and graphene oxide: Surface science and applications. Phys. Chem. Chem. Phys. 2012, 14, 10485–10496.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21575088, 21235003, and 31200742), and the Natural Science Foundation of Shanghai (No. 14ZR1416500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guifang Chen or Genxi Li.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Mao, X., Wang, Z. et al. Fabrication of nanozyme@DNA hydrogel and its application in biomedical analysis. Nano Res. 10, 959–970 (2017). https://doi.org/10.1007/s12274-016-1354-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1354-9

Keywords

Navigation