Skip to main content
Log in

Compromised small-world efficiency of structural brain networks in schizophrenic patients and their unaffected parents

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Several lines of evidence suggest that efficient information integration between brain regions is disrupted in schizophrenia. Abnormalities in white matter tracts that interconnect brain regions may be directly relevant to this pathophysiological process. As a complex mental disorder with high heritability, mapping abnormalities in patients and their first-degree relatives may help to disentangle the risk factors for schizophrenia. We established a weighted network model of white matter connections using diffusion tensor imaging in 25 nuclear families with schizophrenic probands (19 patients and 41 unaffected parents) and two unrelated groups of normal controls (24 controls matched with patients and 26 controls matched with relatives). The patient group showed lower global efficiency and local efficiency. The decreased regional efficiency was localized in hubs such as the bilateral frontal cortices, bilateral anterior cingulate cortices, and left precuneus. The global efficiency was negatively correlated with cognition scores derived from a 5-factor model of schizophrenic psychopathology. We also found that unaffected parents displayed decreased regional efficiency in the right temporal cortices, left supplementary motor area, left superior temporal pole, and left thalamus. The global efficiency tended to be lower in unaffected parents. Our data suggest that (1) the global efficiency loss in neuroanatomical networks may be associated with the cognitive disturbances in schizophrenia; and (2) genetic vulnerability to schizophrenia may influence the anatomical organization of an individual’s brain networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009, 10: 186–198.

    Article  CAS  PubMed  Google Scholar 

  2. Bassett DS, Bullmore ET. Human brain networks in health and disease. Curr Opin Neurol 2009, 22: 340–347.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature 1998, 393: 440–442.

    Article  CAS  PubMed  Google Scholar 

  4. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC. Organization, development and function of complex brain networks. Trends Cogn Sci 2004, 8: 418–425.

    Article  PubMed  Google Scholar 

  5. Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol 2007, 3: e17.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, et al. Disrupted small-world networks in schizophrenia. Brain 2008, 131: 945–961.

    Article  PubMed  Google Scholar 

  7. Wang L, Metzak PD, Honer WG, Woodward TS. Impaired efficiency of functional networks underlying episodic memory-for-context in schizophrenia. J Neurosci 2010, 30: 13171–13179.

    Article  CAS  PubMed  Google Scholar 

  8. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A. Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 2008, 28: 9239–9248.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. van den Heuvel MP, Mandl RC, Stam CJ, Kahn RS, Hulshoff Pol HE. Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J Neurosci 2010, 30: 15915–15926.

    Article  PubMed  Google Scholar 

  10. Zalesky A, Fornito A, Seal ML, Cocchi L, Westin CF, Bullmore ET, et al. Disrupted axonal fiber connectivity in schizophrenia. Biol Psychiatry 2011, 69: 80–89.

    Article  PubMed  Google Scholar 

  11. Konrad A, Winterer G. Disturbed structural connectivity in schizophrenia primary factor in pathology or epiphenomenon? Schizophr Bull 2008, 34: 72–92.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Bullmore ET, Frangou S, Murray RM. The dysplastic net hypothesis: an integration of developmental and dysconnectivity theories of schizophrenia. Schizophr Res 1997, 28: 143–156.

    Article  CAS  PubMed  Google Scholar 

  13. Friston KJ, Frith CD. Schizophrenia: a disconnection syndrome? Clin Neurosci 1995, 3: 89–97.

    CAS  PubMed  Google Scholar 

  14. Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry 2006, 59: 929–939.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Q, Su TP, Zhou Y, Chou KH, Chen IY, Jiang T, et al. Anatomical insights into disrupted small-world networks in schizophrenia. Neuroimage 2012, 59: 1085–1093.

    Article  PubMed  Google Scholar 

  16. Viding E, Williamson DE, Hariri AR. Developmental imaging genetics: challenges and promises for translational research. Dev Psychopathol 2006, 18: 877–892.

    Article  PubMed  Google Scholar 

  17. Lawrie SM, McIntosh AM, Hall J, Owens DG, Johnstone EC. Brain structure and function changes during the development of schizophrenia: the evidence from studies of subjects at increased genetic risk. Schizophr Bull 2008, 34: 330–340.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hoptman MJ, Nierenberg J, Bertisch HC, Catalano D, Ardekani BA, Branch CA, et al. A DTI study of white matter microstructure in individuals at high genetic risk for schizophrenia. Schizophr Res 2008, 106: 115–124.

    Article  PubMed  Google Scholar 

  19. Camchong J, Lim KO, Sponheim SR, Macdonald AW. Frontal white matter integrity as an endophenotype for schizophrenia: diffusion tensor imaging in monozygotic twins and patients’ nonpsychotic relatives. Front Hum Neurosci 2009, 3: 35.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Hao Y, Yan Q, Liu H, Xu L, Xue Z, Song X, et al. Schizophrenia patients and their healthy siblings share disruption of white matter integrity in the left prefrontal cortex and the hippocampus but not the anterior cingulate cortex. Schizophr Res 2009, 114: 128–135.

    Article  PubMed  Google Scholar 

  21. Knochel C, Oertel-Knochel V, Schonmeyer R, Rotarska-Jagiela A, van de Ven V, Prvulovic D, et al. Interhemispheric hypoconnectivity in schizophrenia: fiber integrity and volume differences of the corpus callosum in patients and unaffected relatives. Neuroimage 2012, 59: 926–934.

    Article  PubMed  Google Scholar 

  22. Knochel C, O’Dwyer L, Alves G, Reinke B, Magerkurth J, Rotarska-Jagiela A, et al. Association between white matter fiber integrity and subclinical psychotic symptoms in schizophrenia patients and unaffected relatives. Schizophr Res 2012, 140: 129–135.

    Article  PubMed  Google Scholar 

  23. Collin G, Kahn RS, de Reus MA, Cahn W, van den Heuvel MP. Impaired rich club connectivity in unaffected siblings of schizophrenia patients. Schizophr Bull 2014, 40: 438–448.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett 2001, 87: 198701.

    Article  CAS  PubMed  Google Scholar 

  25. Schmitt JE, Lenroot RK, Wallace GL, Ordaz S, Taylor KN, Kabani N, et al. Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings. Cereb Cortex 2008, 18: 1737–1747.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Smit DJ, Stam CJ, Posthuma D, Boomsma DI, de Geus EJ. Heritability of “small-world” networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity. Hum Brain Mapp 2008, 29: 1368–1378.

    Article  PubMed  Google Scholar 

  27. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971, 9: 97–113.

    Article  CAS  PubMed  Google Scholar 

  28. World Health Organization. The ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research. Geneva: World Health Organization, 1993.

    Google Scholar 

  29. Woods SW. Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 2003, 64: 663–667.

    Article  CAS  PubMed  Google Scholar 

  30. Bai YM, Ting Chen T, Chen JY, Chang WH, Wu B, Hung CH, et al. Equivalent switching dose from oral risperidone to risperidone long-acting injection: a 48-week randomized, prospective, single-blind pharmacokinetic study. J Clin Psychiatry 2007, 68: 1218–1225.

    Article  CAS  PubMed  Google Scholar 

  31. Lehman AF, Steinwachs DM. Translating research into practice: the Schizophrenia Patient Outcomes Research Team (PORT) treatment recommendations. Schizophr Bull 1998, 24: 1–10.

    Article  CAS  PubMed  Google Scholar 

  32. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987, 13: 261–276.

    Article  CAS  PubMed  Google Scholar 

  33. Lindenmayer JP, Bernstein-Hyman R, Grochowski S. A new five factor model of schizophrenia. Psychiatr Q 1994, 65: 299–322.

    Article  CAS  PubMed  Google Scholar 

  34. Li YH, Liu Y, Li J, Qin W, Li KC, Yu CS, et al. Brain anatomical network and intelligence. PLoS Comput Biol 2009, 5: e1000395

    Article  PubMed Central  PubMed  Google Scholar 

  35. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15: 273–289.

    Article  CAS  PubMed  Google Scholar 

  36. Gong GL, He Y, Concha L, Lebel C, Gross DW, Evans AC, et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 2009, 19: 524–536.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999, 45: 265–269.

    Article  CAS  PubMed  Google Scholar 

  38. Thottakara P, Lazar M, Johnson SC, Alexander AL. Application of Brodmann’s area templates for ROI selection in white matter tractography studies. Neuroimage 2006, 29: 868–878.

    Article  PubMed  Google Scholar 

  39. Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, Evans AC. Age- and gender-related differences in the cortical anatomical network. J Neurosci 2009, 29: 15684–15693.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Yu Q, Sui J, Rachakonda S, He H, Pearlson G, Calhoun VD. Altered small-world brain networks in temporal lobe in patients with schizophrenia performing an auditory oddball task. Front Syst Neurosci 2011, 5: 7.

    PubMed Central  PubMed  Google Scholar 

  41. Li X, Xia S, Bertisch HC, Branch CA, Delisi LE. Unique topology of language processing brain network: A systemslevel biomarker of schizophrenia. Schizophr Res 2012, 141: 128–136.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen V, et al. Mapping the structural core of human cerebral cortex. PLoS Biol 2008, 6: 1479–1493.

    Article  CAS  Google Scholar 

  43. Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P, et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 2014, 137: 2382–2395.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, et al. Functional connectivity and brain networks in schizophrenia. J Neurosci 2010, 30: 9477–9487.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Supekar K, Menon V, Rubin D, Musen M, Greicius MD. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 2008, 4: e1000100.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Kalkstein S, Hurford I, Gur RC. Neurocognition in schizophrenia. Curr Top Behav Neurosci 2010, 4: 373–390.

    PubMed  Google Scholar 

  47. Sheppard JP, Wang JP, Wong PC. Large-scale cortical network properties predict future sound-to-word learning success. J Cogn Neurosci 2012, 24: 1087–1103.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Bassett DS, Bullmore ET, Meyer-Lindenberg A, Apud JA, Weinberger DR, Coppola R. Cognitive fitness of cost-efficient brain functional networks. Proc Natl Acad Sci U S A 2009, 106: 11747–11752.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Velligan DI, Mahurin RK, Diamond PL, Hazleton BC, Eckert SL, Miller AL. The functional significance of symptomatology and cognitive function in schizophrenia. Schizophr Res 1997, 25: 21–31.

    Article  CAS  PubMed  Google Scholar 

  50. Munoz Maniega S, Lymer GK, Bastin ME, Marjoram D, Job DE, Moorhead TW, et al. A diffusion tensor MRI study of white matter integrity in subjects at high genetic risk of schizophrenia. Schizophr Res 2008, 106: 132–139.

    Article  CAS  PubMed  Google Scholar 

  51. Peters BD, de Haan L, Dekker N, Blaas J, Becker HE, Dingemans PM, et al. White matter fibertracking in firstepisode schizophrenia, schizoaffective patients and subjects at ultra-high risk of psychosis. Neuropsychobiology 2008, 58: 19–28.

    Article  PubMed  Google Scholar 

  52. Job DE, Whalley HC, Johnstone EC, Lawrie SM. Grey matter changes over time in high risk subjects developing schizophrenia. Neuroimage 2005, 25: 1023–1030.

    Article  PubMed  Google Scholar 

  53. Harms MP, Wang L, Mamah D, Barch DM, Thompson PA, Csernansky JG. Thalamic shape abnormalities in individuals with schizophrenia and their nonpsychotic siblings. J Neurosci 2007, 27: 13835–13842.

    Article  CAS  PubMed  Google Scholar 

  54. Glahn DC, Winkler AM, Kochunov P, Almasy L, Duggirala R, Carless MA, et al. Genetic control over the resting brain. Proc Natl Acad Sci U S A 2010, 107: 1223–1228.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Fornito A, Zalesky A, Bassett DS, Meunier D, Ellison-Wright I, Yucel M, et al. Genetic influences on cost-efficient organization of human cortical functional networks. J Neurosci 2011, 31: 3261–3270.

    Article  CAS  PubMed  Google Scholar 

  56. Seidman LJ, Faraone SV, Goldstein JM, Goodman JM, Kremen WS, Toomey R, et al. Thalamic and amygdalahippocampal volume reductions in first-degree relatives of patients with schizophrenia: an MRI-based morphometric analysis. Biol Psychiatry 1999, 46: 941–954.

    Article  CAS  PubMed  Google Scholar 

  57. Mandl RC, Rais M, van Baal GC, van Haren NE, Cahn W, Kahn RS, et al. Altered white matter connectivity in nevermedicated patients with schizophrenia. Hum Brain Mapp 2013, 34: 2353–2365.

    Article  PubMed  Google Scholar 

  58. Steel RM, Whalley HC, Miller P, Best JJ, Johnstone EC, Lawrie SM. Structural MRI of the brain in presumed carriers of genes for schizophrenia, their affected and unaffected siblings. J Neurol Neurosurg Psychiatry 2002, 72: 455–458.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. McDonald C, Grech A, Toulopoulou T, Schulze K, Chapple B, Sham P, et al. Brain volumes in familial and non-familial schizophrenic probands and their unaffected relatives. Am J Med Genet 2002, 114: 616–625.

    Article  PubMed  Google Scholar 

  60. Bohlken MM, Mandl RC, Brouwer RM, van den Heuvel MP, Hedman AM, Kahn RS, et al. Heritability of structural brain network topology: a DTI study of 156 twins. Hum Brain Mapp 2014, 35: 5295–5305.

    Article  PubMed  Google Scholar 

  61. Li Y, Liu Y, Li J, Qin W, Li K, Yu C, et al. Brain anatomical network and intelligence. PLoS Comput Biol 2009, 5: e1000395.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Hasan KM, Walimuni IS, Abid H, Hahn KR. A review of diffusion tensor magnetic resonance imaging computational methods and software tools. Comput Biol Med 2011, 41: 1062–1072.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: technical considerations. AJNR Am J Neuroradiol 2008, 29: 843–852.

    Article  CAS  PubMed  Google Scholar 

  64. Oouchi H, Yamada K, Sakai K, Kizu O, Kubota T, Ito H, et al. Diffusion anisotropy measurement of brain white matter is affected by voxel size: underestimation occurs in areas with crossing fibers. AJNR Am J Neuroradiol 2007, 28: 1102–1106.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Yan or Dai Zhang.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Tian, L., Wang, Q. et al. Compromised small-world efficiency of structural brain networks in schizophrenic patients and their unaffected parents. Neurosci. Bull. 31, 275–287 (2015). https://doi.org/10.1007/s12264-014-1518-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1518-0

Keywords

Navigation