Skip to main content
Log in

Enhanced production of fatty acids in three strains of microalgae using a combination of nitrogen starvation and chemical inhibitors of carbohydrate synthesis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Microalgae are attracting much attention as superior biodiesel producers. In particular, under stressful conditions, they accumulate organic compounds consisting entirely of carbon and hydrogen. The aim of this work was to increase intracellular fatty acid content in Dunaliella tertiolecta (Chlorophyceae), Nannochloropsis oculata (Eustigmatophyceae), and Porphyridium cruentum (Rhodophyceae) using a combination of nitrogen starvation and chemical inhibitors of carbohydrate biosynthesis. These microalgae were subjected to nitrogen starvation and their physiological changes were then observed over time. In D. tertiolecta, no significant change in total fatty acid content was detected on day 3.5 relative to the initial total fatty acid content (day 0), while total carbohydrate content dramatically increased as the nitrogen starvation period was extended. In N. oculata, total fatty acid content rapidly increased, reaching up to nearly 40% of the DCW at day 3.5. However, total carbohydrate content exhibited a gradual reduction throughout the experiment. In P. cruentum, total carbohydrate content increased up to 43% of DCW on day 3.5 and total fatty acid content increased slightly under nitrogen depletion. These data suggest that different eukaryotic microalgae use different storage products under stressful conditions. Among the three strains, D. tertiolecta showed decreased total carbohydrate content and enhanced total fatty acid content following inhibition of carbohydrate synthesis by dichlorophenyl dimethylurea and cyclohexane diamine tetra acetic acid. The results demonstrate the possibility of furthering our understanding of the fatty acid and carbohydrate biosynthesis metabolic network that responds to environmental changes in microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mata, T. M., A. A. Martins, and N. S. Caetano (2010) Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev. 14: 217–232.

    Article  CAS  Google Scholar 

  2. Liao, J. C., L. Mi, S. Pontrelli, and S. Luo (2016) Fuelling the future: Microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14: 288–304.

    Article  CAS  Google Scholar 

  3. Campbell, P. K., T. Beer, and D. Batten (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour. Technol. 102: 50–56.

    Article  CAS  Google Scholar 

  4. Pancha, I., K. Chokshi, B. George, T. Ghosh, C. Paliwal, R. Maurya, and S. Mishra (2014) Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour. Technol. 156: 146–154.

    Article  CAS  Google Scholar 

  5. Adams, C., V. Godfrey, B. Wahlen, L. Seefeldt, and B. Bugbee (2013) Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresour. Technol. 131: 188–194.

    Article  CAS  Google Scholar 

  6. Dalay, M. C. (2007) Introduction to the algal world. pp. xix In: J. Seck (ed.). Algae and cyanobacteria in extreme environments. Springer, Dordrecht, The Netherlands.

    Google Scholar 

  7. Chen, M., H. Tang, H. Ma, T. C. Holland, K. Y. S. Ng, and S. O. Salley (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour. Technol. 102: 1649–1655.

    Article  CAS  Google Scholar 

  8. Söyler, N., J. L. Goldfarb, S. Ceylan, and M. T. Saçan (2017) Renewable fuels from pyrolysis of Dunaliella tertiolecta: An alternative approach to biochemical conversions of microalgae. Energy. 120: 907–914.

    Article  Google Scholar 

  9. Bermejo Román, R., J. M. Alvárez-Pez, F. G. Acién Fernández, and E. Molina Grima (2002) Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J. Biotechnol. 93: 73–85.

    Article  Google Scholar 

  10. Kavitha, M. D., S. Kathiresan, S. Bhattacharya, and R. Sarada (2016) Culture media optimization of Porphyridium purpureum: production potential of biomass, total lipids, arachidonic and eicosapentaenoic acid. J. Food Sci. Technol. 153: 2270–2278.

    Article  Google Scholar 

  11. Lutzu, G. A., L. Zhang, Z. Zhang, and T. Liu (2017) Feasibility of attached cultivation for polysaccharides production by Porphyridium cruentum. Bioprocess Biosyst. Eng. 40: 73–83.

    Article  CAS  Google Scholar 

  12. Rodolfi, L., G. Chini Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, and M. R. Tredici (2009) Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102: 100–112.

    Article  CAS  Google Scholar 

  13. Li, Y., D. Han, G. Hu, D. Dauvillee, M. Sommerfeld, S. Ball, and Q. Hu (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab. Eng. 12: 387–391.

    Article  Google Scholar 

  14. Daboussi, F., S. Leduc, A. Maréchal, G. Dubois, V. Guyot, C. Perez-Michaut, A. Amato, A. Falciatore, A. Juillerat, M. Beurdeley, D. F. Voytas, L. Cavarec, and P. Duchateau (2014) Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat. Commun. 5: 3831

    Article  CAS  Google Scholar 

  15. Li, Y., D. Han, M. Sommerfeld, and Q. Hu (2011) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour. Technol. 102: 123–129.

    CAS  Google Scholar 

  16. Recht, L., A. Zarka, and S. Boussiba (2012) Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl. Microbiol. Biotechnol. 94: 1495–1503.

    Article  CAS  Google Scholar 

  17. Jones, L. W. and J. Myers (1963) A common link between photosynthesis and respiration in a blue-green alga. Nature 199: 670–672.

    Article  CAS  Google Scholar 

  18. Lee, H. S., Z. H. Kim, H. Park, and C. G. Lee (2016) Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris. Bioproc. Biosyst. Eng. 39: 815–823.

    Article  CAS  Google Scholar 

  19. Lee, H. S., M. W. Seo, Z. H. Kim, and C. G. Lee (2006) Determining the best specific light uptake rates for the lumostatic cultures in bubble column photobioreactors. Enzyme Microb. Technol. 39: 447–452.

    Article  CAS  Google Scholar 

  20. Dubois, M., K. A. Gilles, J. K. Hamilton, P. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  21. Gonen-Zurgil, Y., Y. Carmeli-Schwartz, and A. Sukenik (1996) Selective effect of the herbicide DCMU on unicellular algae—a potential tool to maintain monoalgal mass culture of Nannochloropsis. J. Appl. Phycol. 8: 415–419.

    Article  CAS  Google Scholar 

  22. Bury, N., G. Flik, F. Eddy, and G. Codd (1996) The effects of cyanobacteria and the cyanobacterial toxin microcystin-LR on Ca2+ transport and Na+/K+-ATPase in tilapia gills. J. Exp. Biol. 199: 1319–1326.

    CAS  Google Scholar 

  23. Geider, R. J., H. L. MacIntyre, and T. M. Kana (1998) A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol. Oceanogr. 43: 679–694.

    Article  CAS  Google Scholar 

  24. Zhu, S., W. Huang, J. Xu, Z. Wang, J. Xu, and Z. Yuan (2014) Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour. Technol. 152: 292–298.

    Article  CAS  Google Scholar 

  25. Markou, G., I. Angelidaki, and D. Georgakakis (2012) Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl. Microbiol. Biotechnol. 96: 631–645.

    Article  CAS  Google Scholar 

  26. Scibilia, L., L. Girolomoni, S. Berteotti, A. Alboresi, and M. Ballottari (2015) Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis. Algal Res. 12: 170–181.

    Article  Google Scholar 

  27. Becker, E. W. (1994) Microalgae: Biotechnology and Microbiology. pp. 18–24. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  28. Su, C.-H., L.-J. Chien, J. Gomes, Y.-S. Lin, Y.-K. Yu, J.-S. Liou, and R.-J. Syu (2011) Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J. Appl. Phycol. 23: 903–908.

    Article  CAS  Google Scholar 

  29. Roessler, P. G. (1990) Environmental control of glycerolipid metabolism in microalgae: Commercial implications and future research directions. J. Phycol. 26: 393–399.

    Article  CAS  Google Scholar 

  30. Kuchitsu, K., M. Tsuzuki, and S. Miyachi (1988) Changes of starch localization within the chloroplast induced by changes in CO2 concentration during growth of Chlamydomonas reinhardtii: Independent regulation of pyrenoid starch and stroma starch. Plant Cell Physiol. 29: 1269–1278.

    CAS  Google Scholar 

  31. Roeben, A., J. M. Plitzko, R. Körner, U. M. K. Böttcher, K. Siegers, M. Hayer-Hartl, and A. Bracher (2006) Structural basis for subunit assembly in UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae. J. Mol. Biol. 364: 551–560.

    Article  CAS  Google Scholar 

  32. Patron, N. J. and P. J. Keeling (2005) Common evolutionary origin of starch biosynthetic enzymes in green and red algae. J. Phycol. 41: 1131–1141.

    Article  CAS  Google Scholar 

  33. Iglesias, A. A., Y. Charng, S. Ball, and J. Preiss (1994) Characterization of the kinetic, regulatory, and structural properties of ADP-glucose pyrophosphorylase from Chlamydomonas reinhardtii. Plant Physiol. 104: 1287–1294.

    Article  CAS  Google Scholar 

  34. Klein, U. (1987) Intracellular carbon partitioning in Chlamydomonas reinhardtii. Plant Physiol. 85: 892–897.

    Article  CAS  Google Scholar 

  35. Kleczkowski, L. A., M. Geisler, I. Ciereszko, and H. Johansson (2004) UDP-glucose pyrophosphorylase. An old protein with new tricks. Plant Physiol. 134: 912–918.

    CAS  Google Scholar 

  36. Chan, C. X., E. C. Yang, T. Banerjee, H. S. Yoon, P. T. Martone, J. M. Estevez, and D. Bhattacharya (2011) Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Curr. Biol. 21: 328–333.

    Article  CAS  Google Scholar 

  37. Radakovits, R., R. E. Jinkerson, S. I. Fuerstenberg, H. Tae, R. E. Settlage, J. L. Boore, and M. C. Posewitz (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat. Commun. 3: 686.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choul-Gyun Lee.

Additional information

These two author’s contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, SJ., Park, Y.S., Han, MA. et al. Enhanced production of fatty acids in three strains of microalgae using a combination of nitrogen starvation and chemical inhibitors of carbohydrate synthesis. Biotechnol Bioproc E 22, 60–67 (2017). https://doi.org/10.1007/s12257-016-0575-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0575-9

Keywords

Navigation