Skip to main content

Advertisement

Log in

Development of Novel Monoclonal Antibodies for Evaluation of Transmembrane Prostate Androgen-Induced Protein 1 (TMEPAI) Expression Patterns in Gastric Cancer

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Transmembrane prostate androgen-induced protein 1 (TMEPAI) is a single-span membrane protein, functionally involved in transforming growth factor beta signaling pathway. The particular protein presented in cells in three isoforms, which differs in the length of the soluble N-terminal extracellular domain, making it challenging for the immunochemical recognition. By using quantitative real-time polymerase chain reaction, we identified significant upregulation of PMEPA1 gene expression in malignant tissues of patients with gastric adenocarcinoma. The main part of commercially available anti-TMEPAI antibodies are having polyclonal nature or not suitable for immunocytochemical localization of target protein in tissue specimens. Hence, we decide to generate a set of novel rat monoclonal antibodies (mAb) directed against conservative C-terminal cytoplasmic epitope. Immunoblotting analysis showed that monoclonal antibodies, 2E1, 6C6, and 10A7 were able to recognize specifically target protein in transiently transfected HEK293T and CHO-K1 cells. Especially established mAb, named 10A7, showed the excellent binding ability to target protein in immunohistochemistry. By using developed antibodies, we observed pronounced expression of TMEPAI in normal gastric epithelial cells while tumor cells from gastric adenomas, and adenocarcinoma samples were mostly negative for target protein expression. Also, we found that gastric epithelium cells lose the TMEPAI expression concurrently with severe dysplasia progression, which probably caused by a mechanism involving specific microRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stone L (2015) Prostate cancer: TGF-beta signalling regulator PMEPA1 halts metastases tobone. Nat Rev Urol 12(7):362

    Article  CAS  PubMed  Google Scholar 

  2. Xu LL et al (2000) A novel androgen-regulated gene, PMEPA1, located on chromosome20q13 exhibits high level expression in prostate. Genomics 66(3):257–263

    Article  CAS  PubMed  Google Scholar 

  3. Watanabe Y et al (2010) TMEPAI, a transmembrane TGF-beta-inducible protein, sequestersSmad proteins from active participation in TGF-beta signaling. Mol Cell 37(1):123–134

    Article  CAS  PubMed  Google Scholar 

  4. Vo Nguyen TT et al (2014) TMEPAI/PMEPA1 enhances tumorigenic activities in lungcancer cells. Cancer Sci 105(3):334–341

    Article  PubMed  PubMed Central  Google Scholar 

  5. Azami S et al (2015) Cooperative induction of transmembrane prostate androgen inducedprotein TMEPAI/PMEPA1 by transforming growth factor-beta and epidermal growth factorsignaling. Biochem Biophys Res Commun 456(2):580–585

    Article  CAS  PubMed  Google Scholar 

  6. Hu Yet al. (2013) TMEPAI regulates EMT in lung cancer cells by modulating the ROS and IRS-1 signaling pathways. Carcinogenesis 34(8):1764–1772

    Article  Google Scholar 

  7. Ellenrieder V (2008) TGFbeta regulated gene expression by Smads and Sp1/KLF-liketranscription factors in cancer. Anticancer Res 28(3A):1531–1539

    CAS  PubMed  Google Scholar 

  8. Gratchev A et al (2008) Activation of a TGF-beta-specific multistep gene expression programin mature macrophages requires glucocorticoid-mediated surface expression of TGF-betareceptor II. J Immunol 180(10):6553–6565

    Article  CAS  PubMed  Google Scholar 

  9. Brunschwig EB et al (2003) PMEPA1, a transforming growth factor-beta-induced marker ofterminal colonocyte differentiation whose expression is maintained in primary and metastaticcolon cancer. Cancer Res 63(7):1568–1575

    CAS  PubMed  Google Scholar 

  10. Nakano N et al (2014) C18 ORF1, a novel negative regulator of transforming growth factorbeta signaling. J Biol Chem 289(18):12680–12692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fournier PG et al (2015) The TGF-beta signaling regulator PMEPA1 suppresses prostate cancer metastases to bone. Cancer Cell 27(6):809–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nagaraj NS, Datta PK (2010) Targeting the transforming growth factor-beta signalingpathway in human cancer. Expert Opin Investig Drugs 19(1):77–91

    Article  CAS  PubMed  Google Scholar 

  13. Li H et al (2015) Silencing of PMEPA1 accelerates the growth of prostate cancer cellsthrough AR, NEDD4 and PTEN. Oncotarget 6(17):15137–15149

    Article  PubMed  PubMed Central  Google Scholar 

  14. Singha PK et al (2014) TGF-beta induced TMEPAI/PMEPA1 inhibits canonical Smadsignaling through R-Smad sequestration and promotes non-canonical PI3K/Akt signaling byreducing PTEN in triple negative breast cancer. Genes Cancer 5(9–10):320–336

    PubMed  PubMed Central  Google Scholar 

  15. Saadi A et al (2010) Stromal genes discriminate preinvasive from invasive disease, predictoutcome, and highlight inflammatory pathways in digestive cancers. Proc Natl Acad Sci U S A 107(5):2177–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hirokawa YS et al (2007) High level expression of STAG1/PMEPA1 in an androgenindependentprostate cancer PC3 subclone. Cell Mol Biol Lett 12(3):370–377

    Article  CAS  PubMed  Google Scholar 

  17. Sharad S et al (2014) Methylation of the PMEPA1 gene, a negative regulator of the androgenreceptor in prostate cancer. Epigenetics 2014.9(6):918–927

    Article  Google Scholar 

  18. Volkomorov V et al (2013) Search for potential gastric cancer markers using miRNAdatabases and gene expression analysis. Exp Oncol 35(1):2–7

    CAS  PubMed  Google Scholar 

  19. Grigoryeva ES et al (2013) Expression of Cyclophilin a in gastric adenocarcinoma Patientsand its inverse association with local relapses and distant metastasis. Pathol Oncol Res 20(2):467–473

    Article  PubMed  Google Scholar 

  20. Rae FK et al (2001) Characterization of a novel gene, STAG1/PMEPA1, upregulated inrenal cell carcinoma and other solid tumors. Mol Carcinog 32(1):44–53

    Article  CAS  PubMed  Google Scholar 

  21. Rajkumar T et al (2010) Identification and validation of genes involved in gastrictumorigenesis. Cancer Cell Int 10:45

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rottach A et al (2008) Generation and characterization of a rat monoclonal antibody specificfor PCNA. Hybridoma (Larchmt) 27(2):91–98

    Article  CAS  Google Scholar 

  23. Shi SR, Liu C, Taylor CR (2007) Standardization of immunohistochemistry forformalin-fixed, paraffin-embedded tissue sections based on the antigen-retrieval technique: fromexperiments to hypothesis. J Histochem Cytochem 55(2):105–109

    Article  CAS  PubMed  Google Scholar 

  24. Huang M et al (2014) Generation of a monoclonal antibody specific to a new candidate tumorsuppressor, cell adhesion molecule 2. Tumour Biol 35(8):7415–7422

    Article  CAS  PubMed  Google Scholar 

  25. Harvey KF et al (2002) N4WBP5, a potential target for ubiquitination by the Nedd4 familyof proteins, is a novel Golgi-associated protein. J Biol Chem 277(11):9307–9317

    Article  CAS  PubMed  Google Scholar 

  26. Fock KM (2014) Review article: the epidemiology and prevention of gastric cancer. Aliment Pharmacol Ther 40(3):250–260

    Article  CAS  PubMed  Google Scholar 

  27. Duraes C et al (2014) Biomarkers for gastric cancer: prognostic, predictive or targets oftherapy? Virchows Arch 464(3):367–378

    Article  CAS  PubMed  Google Scholar 

  28. Hofler H, Becker KF (2003) Molecular mechanisms of carcinogenesis in gastric cancer. Recent Results Cancer Res 162:65–72

    Article  PubMed  Google Scholar 

  29. Fu H et al (2009) TGF-beta promotes invasion and metastasis of gastric cancer cells byincreasing fascin 1 expression via ERK and JNK signal pathways. Acta Biochim Biophys Sin Shanghai 41(8):648–656

    Article  CAS  PubMed  Google Scholar 

  30. Shinto O et al (2010) Phosphorylated smad 2 in advanced stage gastric carcinoma. BMC Cancer 10:652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kubiczkova L et al (2012) TGF-beta - an excellent servant but a bad master. J Transl Med 10:183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu R et al (2011) PMEPA1 promotes androgen receptor-negative prostate cell proliferationthrough suppressing the Smad 3/4-c-Myc-p 21 Cip1 signaling pathway. J Pathol 223(5):683–694

    Article  CAS  PubMed  Google Scholar 

  33. Bjorling E, Uhlen M (2008) Antibodypedia, a portal for sharing antibody and antigenvalidation data. Mol Cell Proteomics 7(10):2028–2037

    Article  PubMed  Google Scholar 

  34. Bordeaux J et al (2010) Antibody validation. BioTechniques 48(3):197–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mischak H et al. (2010) Recommendations for biomarker identification and qualification inclinical proteomics. Sci Transl Med 2(46):46ps42

  36. Uhlen M et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419

    Article  PubMed  Google Scholar 

  37. Huttenhain R et al (2012) Reproducible quantification of cancer-associated proteins in bodyfluids using targeted proteomics. Sci Transl Med 4(142):142ra94

    Article  PubMed  PubMed Central  Google Scholar 

  38. Flejou JF (2005) Barrett’s oesophagus: from metaplasia to dysplasia and cancer. Gut 54(Suppl 1):i6–12

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jansson MD, Lund AH (2012) MicroRNA and cancer. Mol Oncol 6(6):590–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu WK et al (2010) MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene 29(43):5761–5771

    Article  CAS  PubMed  Google Scholar 

  41. Zhou H et al (2013) TGF-beta 1 alters microRNA profile in human gastric cancer cells. Chin J Cancer Res 25(1):102–111

    PubMed  PubMed Central  Google Scholar 

  42. Grillari J, Hackl M, Grillari-Voglauer R (2010) miR-17-92 cluster: ups and downs in cancer and aging. Biogerontology 11(4):501–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li J, Yang S, Yan W et al (2015) MicroRNA-19 triggers epithelial-mesenchymal transition of lung cancer cells accompanied by growth inhibition. Lab Investig 95(9):1056–1070

    Article  CAS  PubMed  Google Scholar 

  44. Cellura D, Pickard K, Quaratino S et al (2015) miR-19-mediated inhibition of transglutaminase-2 leads to enhanced invasion and metastasis in colorectal cancer. Mol Cancer Res 13(7):1095–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tsai MM, Wang CS, Tsai CY et al (2014) MicroRNA-196a/-196b promote cell metastasis via negative regulation of radixin in human gastric cancer. Cancer Lett 351(2):222–231

    Article  CAS  PubMed  Google Scholar 

  46. Wu Q, Yang Z, An Y et al (2014) MiR-19a/b modulate the metastasis of gastric cancer cells by targeting the tumour suppressor MXD1. Cell Death Dis 27(5):e1144

    Google Scholar 

  47. Shrestha S, Hsu SD, Huang W et al (2014) A systematic review of microRNA expression profiling studies in human gastric cancer. Cancer Med 3(4):878–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge Prof. M Kato (University of Tsukuba, Japan) for providing original plasmid DNA. Also, an excellent technical assistance from Dr. I. V. Stepanov and Dr. M. A. Buldakov (Tomsk Cancer Research Institute) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniya S. Grigoryeva.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Funding

The presented study financially supported by grants from the Russian Fund for Basic Research (14–04-31500) and Tomsk State University Competitiveness Improvement Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karbyshev, M.S., Grigoryeva, E.S., Volkomorov, V.V. et al. Development of Novel Monoclonal Antibodies for Evaluation of Transmembrane Prostate Androgen-Induced Protein 1 (TMEPAI) Expression Patterns in Gastric Cancer. Pathol. Oncol. Res. 24, 427–438 (2018). https://doi.org/10.1007/s12253-017-0247-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-017-0247-x

Keywords

Navigation