Skip to main content

Human Prostatic Acid Phosphatase in Prostate Carcinogenesis

  • Chapter
  • First Online:
Prostate Cancer

Part of the book series: Protein Reviews ((PRON,volume 16))

  • 2345 Accesses

Abstract

Human prostatic acid phosphatase (PAcP) is classically known as a prostate epithelium-specific differentiation antigen and was used as a surrogate marker for detecting prostate cancer (PCa) and monitoring its progression until the availability of prostate-specific antigen. Mature human PAcP protein is a 100 kDa glycoprotein containing two subunits of approximately 50 kDa each. Classically, two forms of human PAcP proteins have been identified: the cellular form (cPAcP) and the secretory form (sPAcP). Recent studies reveal the existence of a transmembrane form (TM-PAcP). While the function of sPAcP and TM-PAcP in human remains under further investigation, cPAcP functions as a neutral protein tyrosine phosphatase in PCa cells and dephosphorylates human epidermal growth factor receptor-2 (HER-2/ErbB-2/Neu) resulting in decreased cell growth as well as tumor suppression. Clinically, cPAcP levels decrease in PCa tissues and correlate with PCa progression, despite elevated levels of sPAcP in circulation. Data from xenograft animal models validate the tumor suppressor activity of cPAcP in prostate carcinomas. Further, activation of ErbB-2 upon knockdown of cPAcP expression results in a castration-resistant phenotype. Expression of PAcP is regulated by different factors in human PCa cells. PAcP is also a useful immunogen in PCa immunotherapy. Further investigation of the regulatory mechanism of cPAcP expression will likely provide valuable insights into novel PCa therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ab:

Antibody

AcP:

Acid phosphatase

ADT:

Androgen deprivation therapy

APCs:

Antigen-presenting cells

CRPCa:

Castration-resistant prostate cancer

DHT:

5α-dihydrotestosterone

EGF:

Epidermal growth factor

EGFR:

EGF receptor

FBS:

Fetal bovine serum

HDAC:

Histone deacetylase

HER-2/ErbB-2/neu:

Human epidermal growth factor receptor-2

PAcP:

Prostatic acid phosphatase

PCa:

Prostate cancer

PI3K:

Phosphoinositide 3-kinase

pIs:

Isoelectric point

PKC:

Protein kinase C

PSA:

Prostate-specific antigen

PTP:

Protein tyrosine phosphatase

p-Tyr:

Phosphotyrosine

TM-PAcP:

Transmembrane PAcP

Tyr-P:

Tyrosine phosphorylation

References

  1. Gyorkey F (1973) Some aspects of cancer of the prostate gland. Methods Cancer Res 10:279–368

    Google Scholar 

  2. Yam LT (1974) Clinical significance of the human acid phosphatases: a review. Am J Med 56:604–616

    Article  PubMed  CAS  Google Scholar 

  3. Derechin M, Ostrowski W, Galka M, Barnard EA (1971) Acid phosphomonoesterase of human prostate: molecular weight, dissociation and chemical composition. Biochim Biophys Acta 250:143–154

    Article  PubMed  CAS  Google Scholar 

  4. Ostrowski W, Bhargava AK, Dziembor E, Gizler M, Gryszkiewicz J, Barnard EA (1976) Acid phosphomonoesterase of human prostate. Carbohydrate content and optical properties. Biochim Biophys Acta 453:262–269

    Article  PubMed  CAS  Google Scholar 

  5. Risley MJ, Van Etten RL (1987) Structures of the carbohydrate moieties of human prostatic acid phosphatase elucidated by 1H nuclear magnetic resonance spectroscopy. Arch Biochem Biophys 258:404–412

    Article  PubMed  CAS  Google Scholar 

  6. Hakalahti L, Vihko P, Henttu P, Autio-Harmainen H, Soini Y, Vihko R (1993) Evaluation of PAP and PSA gene expression in prostatic hyperplasia and prostatic carcinoma using northern-­blot analyses, in situ hybridization and immunohistochemical stainings with monoclonal and bispecific antibodies. Int J Cancer 55:590–597

    Article  PubMed  CAS  Google Scholar 

  7. Ronnberg L, Vihko P, Sajanti E, Vihko R (1981) Clomiphene citrate administration to normogonadotropic subfertile men: blood hormone changes and activation of acid phosphatase in seminal fluid. Int J Androl 4:372–378

    Article  PubMed  CAS  Google Scholar 

  8. Quintero IB, Araujo CL, Pulkka AE, Wirkkala RS, Herrala AM, Eskelinen EL, Jokitalo E, Hellstrom PA, Tuominen HJ, Hirvikoski PP, Vihko PT (2007) Prostatic acid phosphatase is not a prostate specific target. Cancer Res 67:6549–6554

    Article  PubMed  CAS  Google Scholar 

  9. Vihko P (1979) Human prostatic acid phosphatases: purification of a minor enzyme and comparisons of the enzymes. Invest Urol 16:349–352

    PubMed  CAS  Google Scholar 

  10. Van Etten RL (1982) Human prostatic acid phosphatase: a histidine phosphatase. Ann NY Acad Sci 390:27–51

    Article  PubMed  Google Scholar 

  11. Lin MF, Lee CL, Li SS, Chu TM (1983) Purification and characterization of a new human prostatic acid phosphatase isoenzyme. Biochemistry 22:1055–1062

    Article  PubMed  CAS  Google Scholar 

  12. Gutman EB, Sproul EE, Gutman AB (1936) Significance of increased phosphatase activity at the site of osteoplastic metastases secondary to carcinoma of the prostate gland. Am J Cancer 28:485–495

    Article  CAS  Google Scholar 

  13. Huggins C, Hodges CV (1941) Studies on prostatic cancer: the effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1:293–297

    CAS  Google Scholar 

  14. Chu TM, Lin MF (1998) PSA and acid phosphatase in the diagnosis of prostate cancer. J Clin Lig Assay 21:24–34

    Google Scholar 

  15. Goldfarb DA, Stein BS, Shamszadeh M, Petersen RO (1986) Age-related changes in tissue levels of prostatic acid phosphatase and prostate specific antigen. J Urol 136:1266–1269

    PubMed  CAS  Google Scholar 

  16. Lin MF, Lee MS, Zhou XW, Andressen JC, Meng TC, Johansson SL, West WW, Taylor RJ, Anderson JR, Lin FF (2001) Decreased expression of cellular prostatic acid phosphatase increases tumorigenicity of human prostate cancer cells. J Urol 166:1943–1950

    Article  PubMed  CAS  Google Scholar 

  17. Veeramani S, Yuan TC, Chen SJ, Lin FF, Petersen JE, Shaheduzzaman S, Srivastava S, MacDonald RG, Lin MF (2005) Cellular prostatic acid phosphatase: a protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer. Endocr Relat Cancer 12:805–822

    Article  PubMed  CAS  Google Scholar 

  18. Hassan MI, Aijaz A, Ahmad F (2010) Structural and functional analysis of human prostatic acid phosphatase. Expert Rev Anticancer Ther 10:1055–1068

    Article  PubMed  CAS  Google Scholar 

  19. Igawa T, Lin FF, Rao P, Lin MF (2003) Suppression of LNCaP prostate cancer xenograft tumors by a prostate-specific protein tyrosine phosphatase, prostatic acid phosphatase. Prostate 55:247–258

    Article  PubMed  CAS  Google Scholar 

  20. Zylka MJ, Sowa NA, Taylor-Blake B, Twomey MA, Herrala A, Voikar V, Vihko P (2008) Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 60:111–122

    Article  PubMed  CAS  Google Scholar 

  21. Chuang TD, Chen SJ, Lin FF, Veeramani S, Kumar S, Batra SK, Tu Y, Lin MF (2010) Human prostatic acid phosphatase, an authentic tyrosine phosphatase, dephosphorylates ErbB-2 and regulates prostate cancer cell growth. J Biol Chem 285:23598–23606

    Article  PubMed  CAS  Google Scholar 

  22. Lin MF, Li SS, Chu TM, Lee CL (1990) Comparison of prostate acid phosphatase with acid phosphatase isoenzymes from the lung and spleen. J Clin Lab Anal 4:420–425

    Article  PubMed  CAS  Google Scholar 

  23. Lin MF, Meng TC (1996) Tyrosine phosphorylation of a 185 kDa Phosphoprotein (pp 185) inversely correlates with the cellular activity of human prostatic acid phosphatase. Biochem Biophys Res Commun 226:206–213

    Article  PubMed  CAS  Google Scholar 

  24. Meng TC, Lin MF (1998) Tyrosine phosphorylation of c-ErbB-2 is regulated by the cellular form of prostatic acid phosphatase in human prostate cancer cells. J Biol Chem 273:22096–22104

    Article  PubMed  CAS  Google Scholar 

  25. Johnson LE, Frye TP, Chinnasamy N, Chinnasamy D, McNeel DG (2007) Plasmid DNA vaccine encoding prostatic acid phosphatase is effective in eliciting autologous antigen-­specific CD8+ T cells. Cancer Immunol Immunother 56:885–895

    Article  PubMed  CAS  Google Scholar 

  26. Becker JT, Olson BM, Johnson LE, Davies JG, Dunphy EJ, McNeel DG (2010) DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer. J Immunother 33:639–647

    Article  PubMed  CAS  Google Scholar 

  27. Spies E, Reichardt W, Alvarez G, Groettrup M, Ohlschläger P (2012) An artificial PAP gene breaks self-tolerance and promotes tumor regression in the TRAMP model for prostate carcinoma. Mol Ther 20:555–564

    Article  PubMed  CAS  Google Scholar 

  28. Sims RB (2011) Sipuleucel-T: autologous cellular immunotherapy for men with asymptomatic or minimally symptomatic metastatic castrate resistant prostate cancer. J Cancer 2:357–359

    Article  PubMed  CAS  Google Scholar 

  29. Moss DW, Raymond FD, Wile DB (1995) Clinical and biological aspects of acid phosphatase. Crit Rev Clin Lab Sci 32:431–467

    Article  PubMed  CAS  Google Scholar 

  30. Yousef GM, Diamandis M, Jung K, Diamandis EP (2001) Molecular cloning of a novel human acid phosphatase gene (ACPT) that is highly expressed in the testis. Genomics 74:385–395

    Article  PubMed  CAS  Google Scholar 

  31. Yam LT, Li CY, Lam KW (1980) The nonprostatic acid phosphatases. In: Spring Mills E, Hafez ESE (eds) Male accessory sex glands. Elsevier/North-Holland Biomedical, Amsterdam

    Google Scholar 

  32. Solin T, Kontturi M, Pohlmann R, Vihko P (1990) Gene expression and prostate specificity of human prostatic acid phosphatase (PAP): evaluation by RNA blot analyses. Biochim Biophys Acta 1048:72–77

    Article  PubMed  CAS  Google Scholar 

  33. Zelivianski S, Comeau D, Lin MF (1998) Cloning and analysis of the promoter activity of the human prostatic acid phosphatase gene. Biochem Biophys Res Commun 245:108–112

    Article  PubMed  CAS  Google Scholar 

  34. Li CY, Lam WK, Yam LT (1980) Immunohistochemical diagnosis of prostatic cancer with metastasis. Cancer 46:706–712

    Article  PubMed  CAS  Google Scholar 

  35. Shaw LM, Yang N, Brooks JJ, Neat M, Marsh E, Seamonds B (1981) Immunochemical evaluation of the organ specificity of prostatic acid phosphatase. Clin Chem 27:1505–1512

    PubMed  CAS  Google Scholar 

  36. Yam LT, Janckila AJ, Li CY, Lam WK (1981) Presence of “prostatic” acid phosphatase in human neutrophils. Invest Urol 19:34–38

    PubMed  CAS  Google Scholar 

  37. Seitz J, Aumüller G (1985) Cytochemistry and biochemistry of acid phosphatases V: electrophoretic studies on the heterogeneity of acid phosphatases from human prostate, seminal fluid, and leukocytes. Prostate 7:73–90

    Article  PubMed  CAS  Google Scholar 

  38. Waheed A, Van Etten RL, Gieselmann V, von Figura K (1985) Immunological characterization of human acid phosphatase gene products. Biochem Genet 23:309–319

    Article  PubMed  CAS  Google Scholar 

  39. Kamoshida S, Tsutsumi Y (1990) Extraprostatic localization of prostatic acid phosphatase and prostate-specific antigen: distribution in cloacogenic glandular epithelium and sex-­dependent expression in human anal gland. Hum Pathol 21:1108–1111

    Article  PubMed  CAS  Google Scholar 

  40. Drenckhahn D, Waheed A, Van Etten R (1987) Demonstration of prostatic-type acid phosphatase in non-lysosomal granules in the crypt epithelium of the human duodenum. Histochemistry 88:47–52

    Article  PubMed  CAS  Google Scholar 

  41. Choe BK, Pontes EJ, Rose NR, Henderson MD (1978) Expression of human prostatic acid phosphatase in a pancreatic islet cell carcinoma. Invest Urol 15:312–318

    PubMed  CAS  Google Scholar 

  42. Hoyhtya M, Vihko P, Vuolas L, Tryggvason K, Vihko R (1987) High-affinity monoclonal antibodies specific for human prostatic acid phosphatase. Clin Chem 33:103–107

    PubMed  CAS  Google Scholar 

  43. Lam KW, Li CY, Yam LT, Sun T, Lee G, Ziesmer S (1989) Improved immunohistochemical detection of prostatic acid phosphatase by a monoclonal antibody. Prostate 15:13–21

    Article  PubMed  CAS  Google Scholar 

  44. Graddis TJ, McMahan CJ, Tamman J, Page KJ, Trager JB (2011) Prostatic acid phosphatase expression in human tissues. Int J Clin Exp Pathol 4:295–306

    PubMed  Google Scholar 

  45. Cunha AC, Weigle B, Kiessling A, Bachmann M, Rieber EP (2006) Tissue-specificity of prostate specific antigens: comparative analysis of transcript levels in prostate and non-­prostatic tissues. Cancer Lett 236:229–238

    Article  PubMed  CAS  Google Scholar 

  46. Mori K, Wakasugi C (1985) Immunocytochemical demonstration of prostatic acid ­phosphatase: different secretion kinetics between normal, hyperplastic and neoplastic ­prostates. J Urol 133:877–883

    PubMed  CAS  Google Scholar 

  47. Lilja H, Abrahamsson PA (1988) Three predominant proteins secreted by the human prostate gland. Prostate 12:29–38

    Article  PubMed  CAS  Google Scholar 

  48. Sinha AA, Gleason DF, Wilson MJ, Wick MR, Reddy PK, Blackard CE (1988) Relationship of prostatic acid phosphatase localization in human prostate by a monoclonal antibody with the Gleason grading system. Prostate 13:1–15

    Article  PubMed  CAS  Google Scholar 

  49. Sharief FS, Lee H, Leuderman MM, Lundwall A, Deaven LL, Lee CL, Li SS (1989) Human prostatic acid phosphatase: cDNA cloning, gene mapping and protein sequence homology with lysosomal acid phosphatase. Biochem Biophys Res Commun 160:79–86

    Article  PubMed  CAS  Google Scholar 

  50. Sharief FS, Li SS (1992) Structure of human prostatic acid phosphatase gene. Biochem Biophys Res Commun 184:1468–1476

    Article  PubMed  CAS  Google Scholar 

  51. Sharief FS, Mohler JL, Sharief Y, Li SS (1994) Expression of human prostatic acid phosphatase and prostate specific antigen genes in neoplastic and benign tissues. Biochem Mol Biol Int 33:567–574

    PubMed  CAS  Google Scholar 

  52. Vihko P, Virkkunen P, Henttu P, Roiko K, Solin T, Huhtala ML (1988) Molecular cloning and sequence analysis of cDNA encoding human prostatic acid phosphatase. FEBS Lett 236:275–281

    Article  PubMed  CAS  Google Scholar 

  53. Van Etten RL, Davidson R, Stevis PE, MacArthur H, Moore DL (1991) Covalent structure, disulfide bonding, and identification of reactive surface and active site residues of human prostatic acid phosphatase. J Biol Chem 266:2313–2319

    PubMed  Google Scholar 

  54. Lin MF, Garcia-Arenas R, Chao YC, Lai MM, Patel PC, Xia XZ (1993) Regulation of prostatic acid phosphatase expression and secretion by androgen in LNCaP human prostate carcinoma cells. Arch Biochem Biophys 300:384–390

    Article  PubMed  CAS  Google Scholar 

  55. Banas B, Blaschke D, Fittler F, Horz W (1994) Analysis of the promoter of the human prostatic acid phosphatase gene. Biochim Biophys Acta 1217:188–194

    Article  PubMed  CAS  Google Scholar 

  56. Lin MF, DaVolio J, Garcia-Arenas R (1992) Expression of human prostatic acid phosphatase activity and the growth of prostate carcinoma cells. Cancer Res 52:4600–4607

    PubMed  CAS  Google Scholar 

  57. Roiko K, Janne OA, Vihko P (1990) Primary structure of rat secretory acid phosphatase and comparison to other acid phosphatases. Gene 89:223–229

    Article  PubMed  CAS  Google Scholar 

  58. Zhang XQ, Lee MS, Zelivianski S, Lin MF (2001) Characterization of a prostate-specific tyrosine phosphatase by mutagenesis and expression in human prostate cancer cells. J Biol Chem 276:2544–2550

    Article  PubMed  CAS  Google Scholar 

  59. Hurt JK, Fitzpatrick BJ, Norris-Drouin J, Zylka MJ (2012) Secretion and N-linked glycosylation are required for prostatic acid phosphatase catalytic and antinociceptive activity. PLoS One 7:e32741

    Article  PubMed  CAS  Google Scholar 

  60. Kuciel R, Bakalova A, Mazurkiewicz A, Bilska A, Ostrowski W (1990) Is the subunit of prostatic phosphatase active? reversible denaturation of prostatic acid phosphatase. Biochem Int 22:329–334

    Article  PubMed  CAS  Google Scholar 

  61. Jakob CG, Lewinski K, Kuciel R, Ostrowski W, Lebioda L (2000) Crystal structure of human prostatic acid phosphatase. Prostate 42:211–218

    Article  PubMed  CAS  Google Scholar 

  62. Lad PM, Learn DB, Cooper JF, Reisinger DM (1984) Distribution of prostatic acid phosphatase isoenzymes in normal and cancerous states. Clin Chim Acta 141:51–65

    Article  PubMed  CAS  Google Scholar 

  63. Foti AG, Cooper JF, Herschman H, Malvaez RR (1977) Detection of prostatic cancer by solid-phase radioimmunoassay of serum prostatic acid phosphatase. N Eng J Med 297:1357–1361

    Article  CAS  Google Scholar 

  64. Heller JE (1987) Prostatic acid phosphatase: its current clinical status. J Urol 137:1091–1103

    PubMed  CAS  Google Scholar 

  65. Papsidero LD, Wojcieszyn JW, Horoszewicz JS, Leong SS, Murphy GP, Chu TM (1980) Isolation of prostatic acid phosphatase-binding immunoglobulin G from human sera and its potential for use as a tumor-localizing reagent. Cancer Res 40:3032–3035

    PubMed  CAS  Google Scholar 

  66. Wang MC, Papsidero LD, Kuriyama M, Valenzuela LA, Murphy GP, Chu TM (1981) Prostate antigen: a new potential marker for prostatic cancer. Prostate 2:89–96

    Article  PubMed  CAS  Google Scholar 

  67. Lin MF, Lee CL, Wojcieszyn JW, Wang MC, Valenzuela LA, Murphy GP, Chu TM (1980) Fundamental biochemical and immunological aspects of prostatic acid phosphatase. Prostate 1:415–425

    Article  PubMed  CAS  Google Scholar 

  68. Foti AG, Cooper JF, Herschman H (1979) Prostatic acid phosphatase and prostatic cancer. Recent Results Can Res 67:45–49

    Article  CAS  Google Scholar 

  69. Loor R, Wang MC, Valenzuela L, Chu TM (1981) Expression of prostatic acid phosphatase in human prostate cancer. Cancer Lett 14:63–69

    Article  PubMed  CAS  Google Scholar 

  70. Lin MF, Garcia-Arenas R, Kawachi M, Lin FF (1993) Regulation of the expression of prostatic acid phosphatase in LNCaP human prostate carcinoma cells. Cell Mol Biol Res 39:739–750

    PubMed  CAS  Google Scholar 

  71. Lin MF, Garcia-Arenas R, Xia XZ, Biela B, Lin FF (1994) The cellular level of prostatic acid phosphatase and the growth of human prostate carcinoma cells. Differentiation 57:143–149

    Article  PubMed  CAS  Google Scholar 

  72. Reif AE, Schlesinger RM, Fish CA, Robinson CM (1973) Acid phosphatase isozymes in cancer of the prostate. Cancer 31:689–699

    Article  PubMed  CAS  Google Scholar 

  73. Vihko P, Kostama A, Janne O, Sajanti E, Vihko R (1980) Rapid radioimmunoassay for prostate-­specific acid phosphatase in human serum. Clin Chem 26:1544–1547

    PubMed  CAS  Google Scholar 

  74. Vihko P, Lukkarinen O, Kontturi M, Vihko R (1981) Effectiveness of radioimmunoassay of human prostate-specific acid phosphatase in the diagnosis and follow-up of therapy in ­prostatic carcinoma. Cancer Res 41:1180–1183

    PubMed  CAS  Google Scholar 

  75. Isaacs JT (1983) Prostatic structure and function in relation to the etiology of prostatic cancer. Prostate 4:351–366

    Article  PubMed  CAS  Google Scholar 

  76. Dionne FT, Chevalier S, Bleau G, Roberts KD, Chapdelaine A (1983) Induction of acid phosphatase synthesis in canine prostatic epithelial cells in vitro. Mol Cell Endocrinol 33:113–126

    Article  PubMed  CAS  Google Scholar 

  77. Lin MF, Meng TC, Rao PS, Chang C, Schonthal AH, Lin FF (1998) Expression of human prostatic acid phosphatase correlates with androgen-stimulated cell proliferation in prostate cancer cell lines. J Biol Chem 273:5939–5947

    Article  PubMed  CAS  Google Scholar 

  78. Meng TC, Lee MS, Lin MF (2000) Interaction between protein tyrosine phosphatase and protein tyrosine kinase is involved in androgen-promoted growth of human prostate cancer cells. Oncogene 19:2664–2677

    Article  PubMed  CAS  Google Scholar 

  79. Wu WP, Hao JX, Halldner L, Lovdahl C, DeLander GE, Wiesenfeld-Hallin Z, Fredholm BB, Xu XJ (2005) Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain 113:395–404

    Article  PubMed  CAS  Google Scholar 

  80. Sowa NA, Street SE, Vihko P, Zylka MJ (2010) Prostatic acid phosphatase reduces thermal sensitivity and chronic pain sensitization by depleting phosphatidylinositol 4,5-bisphosphate. J Neurosci 30:10282–10293

    Article  PubMed  CAS  Google Scholar 

  81. Sowa NA, Vadakkan KI, Zylka MJ (2009) Recombinant mouse PAP has pH-dependent ectonucleotidase activity and acts through A(1)-adenosine receptors to mediate antinociception. PLoS One 4:e4248

    Article  PubMed  CAS  Google Scholar 

  82. Zylka MJ (2011) Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol Med 17:188–196

    Article  PubMed  CAS  Google Scholar 

  83. Brillard-Bourdet M, Rehault S, Juliano L, Ferrer M, Moreau T, Gauthier F (2002) Amidolytic activity of prostatic acid phosphatase on human semenogelins and semenogelin-derived synthetic substrates. Eur J Biochem 269:390–395

    Article  PubMed  CAS  Google Scholar 

  84. Ostrowski WS, Kuciel R (1994) Human prostatic acid phosphatase: selected properties and practical applications. Clin Chim Acta 226:121–129

    Article  PubMed  CAS  Google Scholar 

  85. Singh G, Adaikan PG, Ng YK (1996) Is seminal prostatic acid phosphatase a reliable marker for male infertility? Singapore Med J 37:598–599

    PubMed  CAS  Google Scholar 

  86. Dave BN, Rindani TH (1988) Acid phosphatase activity in human semen. Int J Fertil 33:45–47

    PubMed  CAS  Google Scholar 

  87. Saha A, Basu J, Bhattacharyya AK (1981) Seminal acid phosphatase from normal, oligospermic, vasectomized, and azoospermic men. Int J Fertil 26:124–127

    PubMed  CAS  Google Scholar 

  88. Münch J, Rücker E, Ständker L, Adermann K, Goffinet C, Schindler M, Wildum S, Chinnadurai R, Rajan D, Specht A, Giménez-Gallego G, Sánchez PC, Fowler DM, Koulov A, Kelly JW, Mothes W, Grivel JC, Margolis L, Keppler OT, Forssmann WG, Kirchhoff F (2007) Semen-derived amyloid fibrils drastically enhance HIV infection. Cell 131:1059–1071

    Article  PubMed  CAS  Google Scholar 

  89. Pomerantz RJ (2003) HIV: cross-talk and viral reservoirs. Nature 424:136–137

    Article  PubMed  CAS  Google Scholar 

  90. Collins KA, Bennett AT (2001) Persistence of spermatozoa and prostatic acid phosphatase in specimens from deceased individuals during varied postmortem intervals. Am J Forensic Med Pathol 22:228–232

    Article  PubMed  CAS  Google Scholar 

  91. Bouvet JP, Grésenguet G, Bélec L (1997) Vaginal pH neutralization by semen as a cofactor of HIV transmission. Clin Microbiol Infect 3:19–23

    Article  PubMed  Google Scholar 

  92. Sensabaugh GF (1979) The quantitative acid phosphatase test. A statistical analysis of endogenous and postcoital acid phosphatase levels in the vagina. J Forensic Sci 24:346–365

    PubMed  CAS  Google Scholar 

  93. Fischer RS (1949) Acid phosphatase tests as evidence of rape. N Engl J Med 240:738–739

    Article  Google Scholar 

  94. Pinto FC (1959) Rape for the defense - acid phosphatase. J Forensic Med 6:147–159

    Google Scholar 

  95. Enos WF, Mann GT, Dolen WD (1963) A laboratory procedure for the identification of semen. Am J Clin Pathol 39:316–320

    Google Scholar 

  96. Walther G (1971) Acid phosphatase. Its significance in the determination of human seminal traces. J Forensic Med 18:15–17

    PubMed  CAS  Google Scholar 

  97. Gomez RR, Wunsch CD, Davis JH, Hicks DJ (1975) Qualitative and quantitative determinations of acid phosphatase activity in vaginal washings. Am J Clin Pathol 64:423–432

    PubMed  CAS  Google Scholar 

  98. McCloskey KL, Muscillo GC, Noordewier B (1975) Prostatic acid phosphatase activity in the postcoital vagina. J Forensic Sci 20:630–636

    PubMed  CAS  Google Scholar 

  99. Schumann GB, Badawy S, Peglow A, Henry JB (1976) Prostatic acid phosphatase. Current assessment in vaginal fluid of alleged rape victims. Am J Clin Pathol 66:944–952

    PubMed  CAS  Google Scholar 

  100. Enos WF, Beyer JC (1980) Prostatic acid phosphatase, aspermia, and alcoholism in rape cases. J Forensic Sci 25:353–356

    PubMed  CAS  Google Scholar 

  101. Killian CS, Vargas FP, Lee CL, Wang MC, Murphy GP, Chu TM (1980) Quantitative counter immunoelectrophoresis assay for prostatic acid phosphatase. Invest Urol 18:219–224

    PubMed  CAS  Google Scholar 

  102. Kloosterman AD, Pouw-Arnou M, Persijn JP (1984) Comparison of enzyme assay and radioimmunoassay for the measurement of human acid phosphatase in cases of sexual assault. Forensic Sci Int 25:45–55

    Article  PubMed  CAS  Google Scholar 

  103. Okamura K, Yamamoto Y, Ishizu H (1987) Medicolegal identification of seminal fluid by the radioimmunoassay of prostatic acid phosphatase. Nihon Hoigaku Zasshi 41:385–398

    PubMed  CAS  Google Scholar 

  104. Allen SM (1995) An enzyme linked immunosorbent assay (ELISA) for detection of seminal fluid using a monoclonal antibody to prostatic acid phosphatase. J Immunoassay 16:297–308

    Article  PubMed  CAS  Google Scholar 

  105. Hara M, Koyanagi Y, Inoue T, Fukuyama T (1971) Some physico-chemical characteristics of “-seminoprotein”, an antigenic component specific for human seminal plasma. Forensic immunological study of body fluids and secretion. VII. Nihon Hoigaku Zasshi 25:322–324

    PubMed  CAS  Google Scholar 

  106. Wang MC, Valenzuela LA, Murphy GP, Chu TM (1979) Purification of a human prostate specific antigen. Invest Urol 17:159–163

    PubMed  CAS  Google Scholar 

  107. Graves HC, Sensabaugh GF, Blake ET (1985) Postcoital detection of a male-specific semen protein. Application to the investigation of rape. N Engl J Med 312:338–343

    Article  PubMed  CAS  Google Scholar 

  108. Armbruster DA (1993) Prostate-specific antigen: biochemistry, analytical methods, and clinical application. Clin Chem 39:181–195

    PubMed  CAS  Google Scholar 

  109. Li HC, Chernoff J, Chen LB, Kirschonbaum A (1984) A phosphotyrosyl-protein phosphatase activity associated with acid phosphatase from human prostate gland. Eur J Biochem 138:45–51

    Article  PubMed  CAS  Google Scholar 

  110. Lin MF, Clinton GM (1986) Human prostatic acid phosphatase has phosphotyrosyl protein phosphatase activity. Biochem J 235:351–357

    PubMed  CAS  Google Scholar 

  111. Lin MF, Clinton GM (1988) The epidermal growth factor receptor from prostate cells is dephosphorylated by a prostate-specific phosphotyrosyl phosphatase. Mol Cell Biol 8:5477–5485

    PubMed  CAS  Google Scholar 

  112. Vihko PT, Quintero I, Ronka AE, Herrala A, Jantti P, Porvari K, Lindqvist Y, Kaija H, Pulkka A, Vuoristo J Sormunen R, Soini Y, Halmekyto M, Janne J, Luokkala T Kurkela R (2005) Prostatic acid phosphatase (PAcP) is PI(3)P-phosphatase and its inactivation leads to change of cell polarity and invasive prostate cancer (Abstract 5239). Proceedings of the AACR, 96th Annual Meeting, Anaheim, CA

    Google Scholar 

  113. Lin MF, Clinton GM (1987) Human prostatic acid phosphatase and its phosphotyrosyl-­protein phosphatase activity. Adv Protein Phosphatases 4:199–228

    CAS  Google Scholar 

  114. Jackson MD, Denu JM (2001) Molecular reactions of protein phosphatases - insights from structure and chemistry. Chem Rev 101:2313–2340

    Article  PubMed  CAS  Google Scholar 

  115. Rudolph J (2002) Catalytic mechanism of Cdc25. Biochemistry 41:14613–14623

    Article  PubMed  CAS  Google Scholar 

  116. Ostanin K, Saeed A, Van Etten RL (1994) Heterologous expression of human prostatic acid phosphatase and site-directed mutagenesis of the enzyme active site. J Biol Chem 269:8971–8978

    PubMed  CAS  Google Scholar 

  117. McTigue JJ, Van Etten RL (1978) An essential active-site histidine residue in human prostatic acid phosphatase. Ethoxyformylation by diethyl pyrocarbonate and phosphorylation by a substrate. Biochim Biophys Acta 523:407–421

    Article  PubMed  CAS  Google Scholar 

  118. Ostrowski W (1978) Isolation of tau-phosphohistidine from a phosphoryl-enzyme intermediate of human prostatic acid phosphatase. Biochim Biophys Acta 526:147–153

    Article  PubMed  CAS  Google Scholar 

  119. Saini MS, Van Etten RL (1979) An essential carboxylic acid group in human prostate acid phosphatase. Biochim Biophys Acta 568:370–376

    Article  PubMed  CAS  Google Scholar 

  120. Sharma S, Pirila P, Kaija H, Porvari K, Vihko P, Juffer AH (2005) Theoretical investigations of prostatic acid phosphatase. Proteins 58:295–308

    Article  PubMed  CAS  Google Scholar 

  121. Veeramani S, Lee MS, Lin MF (2009) Revisiting histidine-dependent acid phosphatases: a distinct group of tyrosine phosphatases. Trends Biochem Sci 34:273–278

    Article  PubMed  CAS  Google Scholar 

  122. Ortlund E, LaCount MW, Lebioda L (2003) Crystal structures of human prostatic acid phosphatase in complex with a phosphate ion and a-benzylaminobenzylphosphonic acid update the mechanistic picture and offer new insights into inhibitor design. Biochemistry 42:383–389

    Article  PubMed  CAS  Google Scholar 

  123. Bourassa C, Nguyen LT, Durocher Y, Roberts KD, Chevalier S (1991) Prostatic epithelial cells in culture: phosphorylation of protein tyrosyl residues and tyrosine protein kinase activity. J Cell Biochem 46:291–301

    Article  PubMed  CAS  Google Scholar 

  124. Veeramani S, Chou YW, Lin FC, Muniyan S, Lin FF, Kumar S, Xie Y, Lele SM, Tu Y, Lin MF (2012) Reactive oxygen species induced by p66Shc longevity protein mediate nongenomic androgen action via tyrosine phosphorylation signaling to enhance tumorigenicity of prostate cancer cells. Free Radic Biol Med 53:95–108

    Article  PubMed  CAS  Google Scholar 

  125. Lin MF, Garcia-Arenas R (1994) Effect of cell density on androgen regulation of the mRNA level of human prostatic acid phosphatase. Mol Cell Endocrinol 99:R21–R24

    Article  PubMed  CAS  Google Scholar 

  126. Shan JD, Porvari K, Ruokonen M, Karhu A, Launonen V, Hedberg P, Oikarinen J, Vihko P (1997) Steroid-involved transcriptional regulation of human genes encoding prostatic acid phosphatase, prostate-specific antigen, and prostate-specific glandular kallikrein. Endocrinology 138:3764–3770

    Article  PubMed  CAS  Google Scholar 

  127. Virkkunen P, Hedberg P, Palvimo JJ, Birr E, Porvari K, Ruokonen M, Taavitsainen P, Jänne OA, Vihko P (1994) Structural comparison of human and rat prostate-specific acid phosphatase genes and their promoters: identification of putative androgen response elements. Biochem Biophys Res Commun 202:49–57

    Article  PubMed  CAS  Google Scholar 

  128. Riegman PH, Vlietstra RJ, van der Korput JA, Brinkmann AO, Trapman J (1991) The promoter of the prostate-specific antigen gene contains a functional androgen responsive element. Mol Endocrinol 5:1921–1930

    Article  PubMed  CAS  Google Scholar 

  129. Cleutjens KB, van Eekelen CC, van der Korput HA, Brinkmann AO, Trapman J (1996) Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-­specific antigen promoter. J Biol Chem 271:6379–6388

    Article  PubMed  CAS  Google Scholar 

  130. Gotoh A, Ko SC, Shirakawa T, Cheon J, Kao C, Miyamoto T, Gardner TA, Ho LJ, Cleutjens CB, Trapman J, Graham FL, Chung LW (1998) Development of prostate-specific antigen promoter-based gene therapy for androgen-independent human prostate cancer. J Urol 160:220–229

    Article  PubMed  CAS  Google Scholar 

  131. Zelivianski S, Larson C, Seberger J, Taylor R, Lin MF (2000) Expression of human prostatic acid phosphatase gene is regulated by upstream negative and positive elements. Biochim Biophys Acta 1491:123–132

    Article  PubMed  CAS  Google Scholar 

  132. Zelivianski S, Igawa T, Lim S, Taylor R, Lin MF (2002) Identification and characterization of regulatory elements of the human prostatic acid phosphatase promoter. Oncogene 21:3696–3705

    Article  PubMed  CAS  Google Scholar 

  133. Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA, Murphy GP (1983) LNCaP model of human prostatic carcinoma. Cancer Res 43:1809–1818

    PubMed  CAS  Google Scholar 

  134. Lin MF, Lee MS, Garcia-Arenas R, Lin FF (2000) Differential responsiveness of prostatic acid phosphatase and prostate-specific antigen mRNA to androgen in prostate cancer cells. Cell Biol Int 24:681–689

    Article  PubMed  CAS  Google Scholar 

  135. Johnson JL, Ellis BA, Noack D, Seabra MC, Catz SD (2005) The Rab27a-binding protein, JFC1, regulates androgen-dependent secretion of prostate-specific antigen and prostatic-­specific acid phosphatase1. Biochem J 391:699–710

    Article  PubMed  CAS  Google Scholar 

  136. Strom M, Hume AN, Tarafder AK, Barkagianni E, Seabra MC (2002) A family of Rab27-­binding proteins. Melanophilin links Rab27a and myosin Va function in melanosome ­transport. J Biol Chem 277:25423–25430

    Article  PubMed  CAS  Google Scholar 

  137. Tolmachova T, Anders R, Stinchcombe J, Bossi G, Griffiths GM, Huxley C, Seabra MC (2004) A general role for Rab27a in secretory cells. Mol Biol Cell 15:332–344

    Article  PubMed  CAS  Google Scholar 

  138. Lin MF, Zhang XQ, Dean J, Lin FF (2001) Protein kinase C pathway is involved in regulating the secretion of prostatic acid phosphatase in human prostate cancer cells. Cell Biol Int 25:1139–1148

    Article  PubMed  CAS  Google Scholar 

  139. Andrews PE, Young CY, Montgomery BT, Tindall DJ (1992) Tumor-promoting phorbol ester down-regulates the androgen induction of prostate-specific antigen in a human prostatic adenocarcinoma cell line. Cancer Res 52:1525–1529

    PubMed  CAS  Google Scholar 

  140. Henttu P, Vihko P (1993) Growth factor regulation of gene expression in the human prostatic carcinoma cell line LNCaP. Cancer Res 53:1051–1058

    PubMed  CAS  Google Scholar 

  141. Massagué J (1983) Epidermal growth factor-like transforming growth factor. II. Interaction with epidermal growth factor receptors in human placenta membranes and A431 cells. J Biol Chem 258:13614–13620

    PubMed  Google Scholar 

  142. Yarden Y, Ullrich A (1988) Growth factor receptor tyrosine kinases. Annu Rev Biochem 57:443–478

    Article  PubMed  CAS  Google Scholar 

  143. Sporn MB, Roberts AB, Wakefield LM, Assoian RK (1986) Transforming growth factor-­beta: biological function and chemical structure. Science 233:532–534

    Article  PubMed  CAS  Google Scholar 

  144. Martikainen P, Kyprianou N, Isaacs JT (1990) Effect of transforming growth factor-beta 1 on proliferation and death of rat prostatic cells. Endocrinology 127:2963–2968

    Article  PubMed  CAS  Google Scholar 

  145. Albany C, Alva AS, Aparicio AM, Singal R, Yellapragada S, Sonpavde G, Hahn NM (2011) Epigenetics in prostate cancer. Prostate Cancer 2011:580318

    Article  PubMed  CAS  Google Scholar 

  146. Waltregny D, North B, Van Mellaert F, de Leval J, Verdin E, Castronovo V (2004) Screening of histone deacetylases (HDAC) expression in human prostate cancer reveals distinct class I HDAC profiles between epithelial and stromal cells. Eur J Histochem 48:273–290

    PubMed  CAS  Google Scholar 

  147. Nakagawa M, Oda Y, Eguchi T, Aishima S, Yao T, Hosoi F, Basaki Y, Ono M, Kuwano M, Tanaka M, Tsuneyoshi M (2007) Expression profile of class I histone deacetylases in human cancer tissues. Oncol Rep 18:769–774

    PubMed  CAS  Google Scholar 

  148. Weichert W, Röske A, Gekeler V, Beckers T, Stephan C, Jung K, Fritzsche FR, Niesporek S, Denkert C, Dietel M, Kristiansen G (2008) Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer 98:604–610

    Article  PubMed  CAS  Google Scholar 

  149. Chou YW, Chaturvedi NK, Ouyang S, Lin FF, Kaushik D, Wang J, Kim I, Lin MF (2011) Histone deacetylase inhibitor valproic acid suppresses the growth and increases the androgen responsiveness of prostate cancer cells. Cancer Lett 311:177–186

    Article  PubMed  CAS  Google Scholar 

  150. Doehn C (2008) Immunotherapy of prostate cancer. Eur Urol 53:681–683, discussion 684–685

    Article  PubMed  Google Scholar 

  151. Vieweg J (2007) Immunotherapy for advanced prostate cancer. Rev Urol 9(Suppl 1):S29–S38

    PubMed  Google Scholar 

  152. Drake CG (2010) Prostate cancer as a model for tumour immunotherapy. Nat Rev Immunol 10:580–593

    Article  PubMed  CAS  Google Scholar 

  153. Fong L, Ruegg CL, Brockstedt D, Engleman EG, Laus R (1997) Induction of tissue-specific autoimmune prostatitis with prostatic acid phosphatase immunization: implications for immunotherapy of prostate cancer. J Immunol 159:3113–3117

    PubMed  CAS  Google Scholar 

  154. McNeel DG, Nguyen LD, Ellis WJ, Higano CS, Lange PH, Disis ML (2001) Naturally occurring prostate cancer antigen-specific T cell responses of a Th1 phenotype can be detected in patients with prostate cancer. Prostate 47:222–229

    Article  PubMed  CAS  Google Scholar 

  155. Houghton AN (1994) Cancer antigens: immune recognition of self and altered self. J Exp Med 180:1–4

    Article  PubMed  CAS  Google Scholar 

  156. Alam S, McNeel DG (2010) DNA vaccines for the treatment of prostate cancer. Expert Rev Vaccines 9:731–745

    Article  PubMed  CAS  Google Scholar 

  157. Small EJ, Fratesi P, Reese DM, Strang G, Laus R, Peshwa MV, Valone FH (2000) Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol 18:3894–3903

    PubMed  CAS  Google Scholar 

  158. Burch PA, Croghan GA, Gastineau DA, Jones LA, Kaur JS, Kylstra JW, Richardson RL, Valone FH, Vuk-Pavlović S (2004) Immunotherapy (APC8015, Provenge) targeting prostatic acid phosphatase can induce durable remission of metastatic androgen-independent prostate cancer: a phase 2 trial. Prostate 60:197–204

    Article  PubMed  CAS  Google Scholar 

  159. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF, IMPACT Study Investigators (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    Article  PubMed  CAS  Google Scholar 

  160. Fong MK, Hare R, Jarkowski A (2012) A new era for castrate resistant prostate cancer: a treatment review and update. J Oncol Pharm Pract 18:343–354

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This book chapter preparation was supported in part by Grants CA88184 (NIH), PC050769 (DoD), PC074289 (DOD) and the Nebraska Research Initiative. We also thank previous lab members for their contributions and efforts on prostatic acid phosphatase project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Fong Lin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Mayo Clinic

About this chapter

Cite this chapter

Muniyan, S., Chou, YW., Ou-Yang, SQ., Lin, MF. (2013). Human Prostatic Acid Phosphatase in Prostate Carcinogenesis. In: Tindall, D. (eds) Prostate Cancer. Protein Reviews, vol 16. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6828-8_12

Download citation

Publish with us

Policies and ethics