Skip to main content
Log in

Main photoautotrophic components of biofilms in natural draft cooling towers

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

While photoautotrophic organisms are an important component of biofilms that live in certain regions of natural draft cooling towers, little is known about these communities. We therefore examined 18 towers at nine sites to identify the general patterns of community assembly in three distinct tower parts, and we examined how community structures differ depending on geography. We also compared the newly acquired data with previously published data. The bottom sections of draft cooling towers are mainly settled by large filamentous algae, primarily Cladophora glomerata. The central portions of towers host a small amount of planktic algae biomass originating in the cooling water. The upper fourths of towers are colonized by biofilms primarily dominated by cyanobacteria, e.g., members of the genera Gloeocapsa and Scytonema. A total of 41 taxa of phototrophic microorganisms were identified. Species composition of the upper fourth of all towers was significantly affected by cardinal position. There was different species composition at positions facing north compared to positions facing south. West- and east-facing positions were transitory and highly similar to each other in terms of species composition. Biofilms contribute to the degradation of paint coatings inside towers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Crispim CA, Gaylarde PM, Gaylarde CC, Neilan BA (2006) Deteriogenic cyanobacteria, on historic buildings in Brazil detected by culture and molecular techniques. Int Biodeterior Biodegrad 57:239–243. doi:10.1016/j.ibiod.2006.03.001

    Article  CAS  Google Scholar 

  • Ettl H, Gärtner G (1995) Sylabus der Boden-, Luft- und Flechtealgen. Gustav Fischer, Stuttgart, Jena, New York

  • Garcia-Pichel F, Ramirez-Reinat E, Gao QJ (2010) Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport. Proc Natl Acad Sci U S A 107:21749–21754. doi:10.1073/pnas.1011884108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauer T (2007) Rock-inhabiting cyanoprokaryota from South Bohemia (Czech Republic). Nova Hedwigia 85:379–392

    Article  Google Scholar 

  • Hauer T (2010) Phototrophic biofilms on the interior walls of concrete Iterson-type cooling towers. J Appl Phycol 22:733–736. doi:10.1007/s10811-010-9513-y

    Article  Google Scholar 

  • Hindák F, Wolowski K, Hindáková A (2011) The epilithon of a cooling tower of the power plant at Belchatow, Poland. Oceanol Hydrobiol Stud 40:38–43. doi:10.2478/s13545-011-0039-y

    Article  Google Scholar 

  • Houk V (2003) Atlas of freshwater centric diatoms with a brief key and descriptions. Part I., Melosiraceae, Orthoseiraceae, Paraliaceae and Aulacoseiraceae. Czech Phycology, Supplement 1: 1–107

  • Kaštovský J, Řeháková K, Bastl M, Vymazal J, King R (2008) Experimental assessment of phosphorus effects on algal assemblages in dosing mesocosms. In: Richardson C (ed) The Everglades Experiments. Springer, New York, pp 461–475

    Chapter  Google Scholar 

  • Komárek J (2013) Cyanoprokaryota 3. Teil/Part 3: Heterocytous genera vol 19/3. Süsswasserflora von Mitteleuropa. Springer Spektrum, Berlin, Heidelberg

    Book  Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota, 1.Teil/ 1st Part: Chroococcales. vol 19/1. Süsswasserflora von Mitteleuropa. Gustav Fischer, Jena

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota, 2. Teil/ 2nd Part: Oscillatoriales. vol 19/2. Süsswasserflora von Mitteleuropa. Elsevier/Spektrum Akademischer Verlag, München

    Google Scholar 

  • Kovář P et al, (2010) Správkové hmoty s fotokatalytickým účinkem. Zpravodaj WTA CZ 2010:36–39

  • Ludensky M (2005) Microbiological control in cooling water systems. Directory of Microbiocides for the Protection of Materials: A Handbook, pp. 121–139

  • Ludyanskiy ML (1991) Algal fouling in cooling waters. Biofouling 3:13–21

    Article  Google Scholar 

  • Oksanen J et al (2013) Vegan: community ecology package., 2.0-10 edn

  • Ortega-Morales BO, Gaylarde C, Anaya-Hernandez A, Chan-Bacab MJ, De la Rosa-Garcia SC, Arano-Recio D, Montero-M J (2013) Orientation affects Trentepohlia-dominated biofilms on Mayan monuments of the Rio Bec style. Int Biodeterior Biodegrad 84:351–356. doi:10.1016/j.ibiod.2012.07.014

    Article  CAS  Google Scholar 

  • Pagnier I, Merchat M, La Scola B (2009) Potentially pathogenic amoeba-associated microorganisms in cooling towers and their control. Future Microbiol 4:615–629. doi:10.2217/fmb.09.25

    Article  CAS  PubMed  Google Scholar 

  • R Develoment Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Radea C, Louvrou I, Pantazidou A, Economou-Amilli A (2010) Photosynthetic microorganisms as epibionts and euendoliths on biotic substrates in a thermal spring with ferric-iron deposits. Fottea 10:129–140. doi:10.5507/fot.2010.007

    Article  Google Scholar 

  • Ramirez M, Hernandez-Marine M, Mateo P, Berrendero E, Roldan M (2011) Polyphasic approach and adaptative strategies of Nostoc cf. commune (Nostocales, Nostocaceae) growing on Mayan monuments. Fottea 11:73–86. doi:10.5507/fot.2011.007

    Article  Google Scholar 

  • Sládečková A (1961) Zarůstání chladicích zařízení parních elektráren. Energetika 11:327–329

    Google Scholar 

  • Sládečková A (1969) Control of slimes and algae in cooling systems. Verh Internat Verein Limnol 17:532–538

    Google Scholar 

  • Sládečková A, Sládeček V (1958) Der Aufwuchs auf den Kühltürmen der Dampfkraftwerke und einige einfache Abhilfemassnahmen. Hydrobiologia 12:43–54

    Article  Google Scholar 

  • Stommel EW, Field NC, Caller TA (2013) Aerosolization of cyanobacteria as a risk factor for amyotrophic lateral sclerosis. Med Hypotheses 80:142–145. doi:10.1016/j.mehy.2012.11.012

    Article  CAS  PubMed  Google Scholar 

  • Taylor M, Ross K, Bentham R (2009) Legionella, Protozoa, and Biofilms: interactions within complex microbial systems. Microb Ecol 58:538–547. doi:10.1007/s00248-009-9514-z

    Article  PubMed  Google Scholar 

  • Tison D, Pope D, Cherry W, Fliermans C (1980) Growth of Legionella pneumophila in association with bluegreen algae (cyanobacteria). Appl Environ Microbiol 39:456–459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Liu M, Xiao H, Wu W, Xie M, Sun M, Zhu C, Li P (2013) Bacterial community structure in cooling water and biofilm in an industrial recirculating cooling water system. Water Sci Technol 68(4):940–947. doi:10.2166/wst.2013.334

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the University of South Bohemia under Grant GAJU 04-146/2013P and Academy of Sciences of the Czech Republic under long-term research development Project No. RVO67985939.

The authors also wish to thank all the companies who provided access to their cooling towers, to Pavel Ambroz from Temelín power plant for valuable information concerning tower maintenance, and also to anonymous reviewers for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Hauer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

List of species found in particular localities. Taxa found in bottom part of the towers are marked with an asterisk (*). Unmarked taxa were found in upper parts only

Supplementary Figure S2

Selection of most common phototropic taxa found in cooling towers: (a) Cladophora glomerata; (b) Gloeocapsa compacta; (c, d) Scytonema myochrous; (e) Phormidium cf. grunowianum; (f) Brasilonema sp.

High resolution image

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauer, T., Čapek, P. & Böhmová, P. Main photoautotrophic components of biofilms in natural draft cooling towers. Folia Microbiol 61, 255–260 (2016). https://doi.org/10.1007/s12223-015-0429-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-015-0429-4

Keywords

Navigation