Skip to main content
Log in

APL1, an altered peptide ligand derived from human heat-shock protein 60, increases the frequency of Tregs and its suppressive capacity against antigen responding effector CD4 + T cells from rheumatoid arthritis patients

  • Short Communication
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by a chronic relapsing-remitting joint inflammation. Perturbations in the balance between CD4 + T cells producing IL-17 and CD4 + CD25highFoxP3 + Tregs correlate with irreversible bone and cartilage destruction in RA. APL1 is an altered peptide ligand derived from a CD4+ T-cell epitope of human HSP60, an autoantigen expressed in the inflamed synovium, which increases the frequency of CD4 + CD25highFoxP3+ Tregs in peripheral blood mononuclear cells from RA patients. The aim of this study was to evaluate the suppressive capacity of Tregs induced by APL1 on proliferation of effector CD4+ T cells using co-culture experiments. Enhanced Treg-mediated suppression was observed in APL1-treated cultures compared with cells cultured only with media. Subsequent analyses using autologous cross-over experiments showed that the enhanced Treg suppression in APL1-treated cultures could reflect increased suppressive function of Tregs against APL1-responsive T cells. On the other hand, APL1-treatment had a significant effect reducing IL-17 levels produced by effector CD4+ T cells. Hence, this peptide has the ability to increase the frequency of Tregs and their suppressive properties whereas effector T cells produce less IL-17. Thus, we propose that APL1 therapy could help to ameliorate the pathogenic Th17/Treg balance in RA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Aletaha D, Neogi T, Silman AJ et al (2010) Rheumatoid arthritis classification criteria an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62(9):2569–2581

    Article  PubMed  Google Scholar 

  • AlFadhli S (2013) The interleukin 23/Interleukin-17 axis and the role of Treg/Th17 cells in rheumatoid arthritis and joint destruction. OA Arthritis 1(1):5–11

    Article  Google Scholar 

  • Allan SE, Passerini L, Bacchetta R et al (2005) The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J Clin Invest 115:3276–3284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barberá A, Lorenzo N, Garrido G et al (2013) APL-1, an altered peptide ligand derived from human heat-shock protein 60, selectively induces apoptosis in activated CD4+ CD25+ T cells from peripheral blood of rheumatoid arthritis patients. Int Immunopharmacol 17(4):1075–1083

    Article  PubMed  Google Scholar 

  • Barberá A, Broere F, van Eden W (2015) Heat shock proteins as target for the induction of antigen-specific tolerance in rheumatoid arthritis and other chronic inflammatory diseases. J Autoimmune Dis Rheumatol 3(2):41–52

    Article  Google Scholar 

  • Berenbaum F (2013) Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis). Osteoarthr Cartil 21(1):16–21

    Article  CAS  PubMed  Google Scholar 

  • Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  CAS  PubMed  Google Scholar 

  • Buckner JH (2010) Mechanisms of impaired regulation by CD4 + CD25 + FOXP3+ regulatory T cells in human autoimmune diseases. Nat Rev Immunol 10:849–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burchill MA, Goetz CA, Prlic M et al (2003) Distinct effects of STAT5 activation on CD4 + and CD8 + T cell homeostasis: development of CD4 + CD25 + regulatory T cells versus CD8 + memory T cells. J Immunol 171:5853–5864

    Article  CAS  PubMed  Google Scholar 

  • Burchill MA, Yang J, Vang KB et al (2008) Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28:112–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao D, Malmstrom V, Baecher-Allan C et al (2003) Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol 33(1):215–223

    Article  CAS  PubMed  Google Scholar 

  • Cope AP, Schulze-Koops H, Aringer M (2007) The central role of T cells in rheumatoid arthritis. Clin Exp Rheumatol 25(5 Suppl 46):S4–S11

    CAS  PubMed  Google Scholar 

  • de Jager W, Prakken BJ, Bijlsma JW, Kuis W, Rijkers GT (2005) Improved multiplex immunoassay performance in human plasma and synovial fluid following removal of interfering heterophilic antibodies. J Immunol Methods 300:124–135

    Article  PubMed  Google Scholar 

  • de Jager W, Hoppenreijs EP, Wulffraat NM, Wedderburn LR, Kuis W, Prakken BJ (2007) Blood and synovial fluid cytokine signatures in patients with juvenile idiopathic arthritis: a cross-sectional study. Ann Rheum Dis 66:589–598

    Article  PubMed  Google Scholar 

  • Domínguez MC, Lorenzo N, Barberá A et al (2011) An altered peptide ligand corresponding to a novel epitope from heat-shock protein 60 induces regulatory T cells and suppresses pathogenic response in an animal model of adjuvant induced arthritis. Autoimmunity 44(6):471–482

    Article  Google Scholar 

  • Domínguez MC, Lorenzo N, Cantera D (2014) A peptide as immunomodulator for the treatment of juvenile idiopathic arthritis. Ann Rheum Dis 73:130

    Google Scholar 

  • Ehrenstein MR, Evans JG, Singh A et al (2004) Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J Exp Med 200(3):277–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavin MA, Torgerson TR, Houston E et al (2006) Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. PNAS 103:6659–6664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Z, Wang W, Jia R et al (2007) Accumulation of FoxP3-expressing CD4 + CD25+ T cells with distinct chemokine receptors in synovial fluid of patients with active rheumatoid arthritis. Scand J Rheumatol 36(6):428–433

    Article  CAS  PubMed  Google Scholar 

  • Koffeman EC, Genovese M, Amox D et al (2009) Epitope specific immunotherapy of rheumatoid arthritis: clinical responsiveness occurs with immune deviation and relies on the expression of a cluster of molecules associated with T cell tolerance in a double-blind, placebo-controlled, pilot phase II trial. Arthritis Rheum 60:3207–3216

    Article  CAS  PubMed  Google Scholar 

  • Kotake S, Udagawa N, Takahashi N et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103(9):1345–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leipe J, Skapenko A, Lipsky PE, Schulze-Koops H (2005) Regulatory T cells in rheumatoid arthritis. Arthritis Res Ther 7:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leipe J, Grunke M, Dechant C et al (2010) Role of Th17 cells in human autoimmune arthritis. Arthritis Rheum 62(10):2876–2885

    Article  CAS  PubMed  Google Scholar 

  • Lina C, Conghua W, Nan L, Ping Z (2011) Combined treatment of etanercept and MTX reverses Th1/Th2, Th17/Treg imbalance in patients with rheumatoid arthritis. J Clin Immunol 31(4):596–605

    Article  PubMed  Google Scholar 

  • Lorenzo N, Barberá A, Domínguez MC et al (2012) Therapeutic effect of an altered peptide ligand derived from heat-shock protein 60 by suppressing of inflammatory cytokines secretion in two animal models of rheumatoid arthritis. Autoimmunity 45(6):449–459

    Article  CAS  PubMed  Google Scholar 

  • Mahmud SA, Manlove LS, Farrar MA (2012) Interleukin-2 and STAT5 in regulatory T cell development and function. Landes Bioscience 2(1):e23154–e23156

    Google Scholar 

  • Masteller EL, Tang Q, Bluestone JA (2006) Antigen-specific regulatory T cells—ex vivo expansion and therapeutic potential. Semin Immunol 18(2):103–110

    Article  CAS  PubMed  Google Scholar 

  • McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219

    Article  CAS  PubMed  Google Scholar 

  • Moran AE, Holzapfel KL, Xing Y et al (2011) T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med 208:1279–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie H, Zheng Y, Li R et al (2013) Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat Med 19:322–328

    Article  CAS  PubMed  Google Scholar 

  • Park H, Li Z, Yang XO et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6(11):1133–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasare C, Medzhitov R (2003) Toll pathway dependent blockade of CD4 + CD25+ T cell-mediated suppression by dendritic cells. Science 299(5609):1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Prakken B, Albani S, Martini A (2001) Juvenile idiopathic arthritis. Lancet 377:2138–2149

    Article  Google Scholar 

  • Prakken BJ, Samodal R, Le TD et al (2004) Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis. PNAS 101(12):4228–4233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi S, Wing K, Onishi Y et al (2009) Regulatory T cells: how do they suppress immune responses? Int Immunol 21(10):1105–1111

    Article  CAS  PubMed  Google Scholar 

  • Sempere-Ortells JM, Pérez-García V, Marín-Alberca G et al (2009) Quantification and phenotype of regulatory T cells in rheumatoid arthritis according to disease activity Score-28. Autoimmunity 42(8):636–645

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Xia L, Lu J, Xiao W (2010) Infliximab reduces the frequency of interleukin 17-producing cells and the amounts of interleukin 17 in patients with rheumatoid arthritis. J Investig Med 58(7):905–908

    Article  CAS  PubMed  Google Scholar 

  • Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE (2006) TNF downmodulates the function of human CD4 + CD25hi T-regulatory cells. Blood 108(1):253–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Eden W, van der Zee R, Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5:318–330

    Article  PubMed  Google Scholar 

  • Waite JC, Skokos D (2012) Th17 response and inflammatory autoimmune diseases. Int J Inflamm 2012:819467

    Article  Google Scholar 

  • Wang W, Shao S, Jiao Z, Guo M, Xu H, Wang S (2012) The Th17/Treg imbalance and cytokine environment in peripheral blood of patients with rheumatoid arthritis. Rheumatol Int 32:887–893

    Article  CAS  PubMed  Google Scholar 

  • Wehrens EJ, Prakken BJ, van Wijk F (2013) T cells out of control—impaired immune regulation in the inflamed joint. Nat Rev Rheumatol 9:34–42

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Laurence A, O’Shea JJ (2008) New insights into the roles of Stat5a/b and Stat3 in T cell development and differentiation. Semin Cell Dev Biol 19(4):394–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng SG (2013) Regulatory T cells vs Th17: differentiation of Th17 versus Treg, are the mutually exclusive? Am J Clin Exp Immunol 2(1):94–106

    PubMed  PubMed Central  Google Scholar 

  • Zheng SG, Wang J, Horwitz DA (2008) Cutting edge: Foxp3 + CD4 + CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J Immunol 180:7112–7116

    Article  CAS  PubMed  Google Scholar 

  • Zonneveld-Huijssoon E, Albani S, Prakken BJ, van Wijk F (2013) Heat shock protein bystander antigens for peptide immunotherapy in autoimmune disease. Clin Exp Immunol 171(1):20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou L, Barnett B, Safah H et al (2004) Bone marrow is a reservoir for CD4 + CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res 64:8451–8455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Ger Arkesteijn, Dr. Irene Ludwig, and Drs. Charlotte de Wolf are acknowledged for their assistance. Dr. Emmerik Leijten and Dr. Yusimy Reyes are acknowledged for their support in the selection of patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María del Carmen Domínguez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Funding

This work was supported by the Women in Science Program financed by L’Oreal/UNESCO, grants of Dutch Arthritis Association, and the Innovation Oriented Programme Genomics (IOP) and Biomedical Research Department at Center for Genetic Engineering and Biotechnology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barberá, A., Lorenzo, N., van Kooten, P. et al. APL1, an altered peptide ligand derived from human heat-shock protein 60, increases the frequency of Tregs and its suppressive capacity against antigen responding effector CD4 + T cells from rheumatoid arthritis patients. Cell Stress and Chaperones 21, 735–744 (2016). https://doi.org/10.1007/s12192-016-0698-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0698-0

Keywords

Navigation