Skip to main content
Log in

Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis

  • Mini Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

O-linked N-acetyl-β-d-glucosamine (O-GlcNAc) is a ubiquitous and dynamic post-translational modification known to modify over 3,000 nuclear, cytoplasmic, and mitochondrial eukaryotic proteins. Addition of O-GlcNAc to proteins is catalyzed by the O-GlcNAc transferase and is removed by a neutral-N-acetyl-β-glucosaminidase (O-GlcNAcase). O-GlcNAc is thought to regulate proteins in a manner analogous to protein phosphorylation, and the cycling of this carbohydrate modification regulates many cellular functions such as the cellular stress response. Diverse forms of cellular stress and tissue injury result in enhanced O-GlcNAc modification, or O-GlcNAcylation, of numerous intracellular proteins. Stress-induced O-GlcNAcylation appears to promote cell/tissue survival by regulating a multitude of biological processes including: the phosphoinositide 3-kinase/Akt pathway, heat shock protein expression, calcium homeostasis, levels of reactive oxygen species, ER stress, protein stability, mitochondrial dynamics, and inflammation. Here, we will discuss the regulation of these processes by O-GlcNAc and the impact of such regulation on survival in models of ischemia reperfusion injury and trauma hemorrhage. We will also discuss the misregulation of O-GlcNAc in diseases commonly associated with the stress response, namely Alzheimer’s and Parkinson’s diseases. Finally, we will highlight recent advancements in the tools and technologies used to study the O-GlcNAc modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

4-OHT:

4-Hydroxytamoxifen

AD:

Alzheimer’s disease

APP:

Amyloid β precursor protein

Aβ:

Amyloid β

Bcl-2:

B-cell lymphoma 2

BEMAD:

Beta elimination and Michael addition

CaMK:

Ca2+/calmodulin-dependent kinase

CCE:

Capacitative Ca2+ entry

CID:

Collision-induced dissociation

DON:

6-Diazo-5-oxo-L-norleucine

Emeg32:

Glucosamine-6-phosphate acetyltransferase

eNOS:

Endothelial nitric oxide synthase

ESI:

Electrospray ionization

ETD:

Electron transfer dissociation

FDGlcNAc:

Fluorescein di-N-acetyl-β-d-glucosaminide

Foxo:

Forkhead box

FRET:

Förster resonance energy transfer

GalNAz:

N-azidoacetylgalactosamine

GalT1:

UDP-Gal/GlcNAcβ-1,4-galactosyltransferase

GE:

Gel electrophoresis

GFAT:

Glutamine/fructose-6-phosphate amidotransferase

GlcNAz:

N-azidoacetylglucosamine

GSK3β:

Glycogen synthase kinase 3β

HAT:

Histone acetyltransferase

HBP:

Hexosamine biosynthetic pathway

Hex:

Hexosaminidase

HK:

Hexokinase

HSC:

Heat shock cognate

HSF:

Heat shock factor

HSP:

Heat shock protein

I/R:

Ischemia–reperfusion

IKKβ:

Inhibitor of NFκB kinase

IL:

Interleukin

IP3 :

Inositol (3,4,5)-trisphosphate

IRS-1:

Insulin receptor substrate 1

K18:

Cytokeratin 18

LC:

Liquid chromatography

LWAC:

Lectin weak affinity chromatography

MALDI:

Matrix-assisted laser desorption ionization

MAP3K7:

Mitogen-activated protein kinase kinase kinase 7

MAPK:

Mitogen-activated protein kinase

Mgea5:

Meningioma-expressed antigen 5

mOGT:

Mitochondrial OGT

mPTP:

Mitochondrial permeability transition pore

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

nCl:

Negative chemical ionization

ncOGT:

Nuclear/cytoplasmic OGT

NFκB:

Nuclear factor κB

NO:

Nitric oxide

O-GlcNAc:

O-linked N-acetyl-β-d-glucosamine

O-GlcNAcase (OGA):

N-acetyl-β-glucosaminidase

O-GlcNAcylated:

O-GlcNAc-modified

OGT (O-GlcNAc transferase):

UDP-N-acetylglucosamine/peptide N-acetylglucosaminyl-transferase

PD:

Parkinson’s disease

PGC1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-α

Pgm3:

N-acetylglucosamine-phosphate mutase

PI3K:

Phosphoinositide 3-kinase

PIP3 :

Phosphatidylinositol (3,4,5)-trisphosphate

PNGase:

F Peptide N-glycosidase F

pNP-β-GlcNAc:

p-Nitrophenol-N-acetyl-β-d-glucosamine

PRMT4/Carm1:

Protein arginine methyltransferase 4

PTM:

Post-translational modification

PUGNAc:

O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate

QTOF:

Quadrupole time-of-flight

Rb:

Retinoblastoma protein

ROS:

Reactive oxygen species

RT-PCR:

Real-time polymerase chain reaction

SILAC:

Stable isotope labeling with amino acids in cell culture

STZ:

Streptozotocin

sWGA:

Succinylated WGA

TAB1:

TAK1-binding protein

TAD:

Transactivation domain

TAK1:

TGF-β-activated kinase I

TGF:

Transforming growth factor

TMG:

(thiamet-G) 2-Ethylamino-3aR, 6S, 7R, 7aR-tetrahydro-5R-hydroxymethyl-5H-pyrano[3, 2-d]thiazole-6,7-diol

TNF-α:

Tumor necrosis factor-α

TRP:

Tetratricopeptide

Uap1:

UDP-GlcNAc pyrophosphorylase

UDP:

Uridine diphosphate

UL32:

Human cytomegalovirus tegument basic phosphoprotein

VDAC:

Voltage-dependent anion channel

WGA:

Wheat germ agglutinin

References

  • Akimoto Y, Hart GW, Hirano H, Kawakami H (2005) O-GlcNAc modification of nucleocytoplasmic proteins and diabetes. Med Mol Morphol 38(2):84–91

    Article  PubMed  CAS  Google Scholar 

  • Arnold CS, Johnson GV, Cole RN, Dong DL, Lee M, Hart GW (1996) The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J Biol Chem 271(46):28741–28744

    Article  PubMed  CAS  Google Scholar 

  • Ball LE, Berkaw MN, Buse MG (2006) Identification of the major site of O-linked beta-N-acetylglucosamine modification in the C terminus of insulin receptor substrate-1. Mol Cell Proteomics 5(2):313–323

    PubMed  CAS  Google Scholar 

  • Batista-Nascimento L, Neef DW, Liu PC, Rodrigues-Pousada C, Thiele DJ (2011) Deciphering human heat shock transcription factor 1 regulation via post-translational modification in yeast. PLoS One 6(1):e15976

    Article  PubMed  CAS  Google Scholar 

  • Beer D, Maloisel J-L, Rast DM, Vasella A (1990) Synthesis of 2-acetamido-2-deoxy-d-gluconhydroximolactone and chitobionhydroximolactone-derived N-phenylcarbamates, potential inhibitors of beta-N-acetylglucosaminidase. Helv Chim Acta 73(7):1918–1922

    Article  CAS  Google Scholar 

  • Bertram L, Blacker D, Mullin K, Keeney D, Jones J, Basu S, Yhu S, McInnis MG, Go RC, Vekrellis K, Selkoe DJ, Saunders AJ, Tanzi RE (2000) Evidence for genetic linkage of Alzheimer’s disease to chromosome 10q. Science 290(5500):2302–2303

    Article  PubMed  CAS  Google Scholar 

  • Bimboese P, Gibson CJ, Schmidt S, Xiang W, Ehrlich BE (2011) Isoform-specific regulation of the inositol 1,4,5-trisphosphate receptor by O-linked glycosylation. J Biol Chem 286(18):15688–15697

    Article  PubMed  CAS  Google Scholar 

  • Boehmelt G, Fialka I, Brothers G, McGinley MD, Patterson SD, Mo R, Hui CC, Chung S, Huber LA, Mak TW, Iscove NN (2000a) Cloning and characterization of the murine glucosamine-6-phosphate acetyltransferase EMeg32. Differential expression and intracellular membrane association. J Biol Chem 275(17):12821–12832

    Article  PubMed  CAS  Google Scholar 

  • Boehmelt G, Wakeham A, Elia A, Sasaki T, Plyte S, Potter J, Yang Y, Tsang E, Ruland J, Iscove NN, Dennis JW, Mak TW (2000b) Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells. EMBO J 19(19):5092–5104

    Article  PubMed  CAS  Google Scholar 

  • Boyce M, Carrico IS, Ganguli AS, Yu SH, Hangauer MJ, Hubbard SC, Kohler JJ, Bertozzi CR (2011) Metabolic cross-talk allows labeling of O-linked beta-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway. Proc Natl Acad Sci U S A 108(8):3141–3146

    Article  PubMed  CAS  Google Scholar 

  • Buse MG (2006) Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab 290(1):E1–E8

    Article  PubMed  CAS  Google Scholar 

  • Buse MG, Robinson KA, Marshall BA, Hresko RC, Mueckler MM (2002) Enhanced O-GlcNAc protein modification is associated with insulin resistance in GLUT1-overexpressing muscles. Am J Physiol Endocrinol Metab 283(2):E241–E250

    PubMed  CAS  Google Scholar 

  • Butkinaree C, Cheung WD, Park S, Park K, Barber M, Hart GW (2008) Characterization of beta-N-acetylglucosaminidase cleavage by caspase-3 during apoptosis. J Biol Chem 283(35):23557–23566

    Article  PubMed  CAS  Google Scholar 

  • Caldwell SA, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S, Vosseller K, Reginato MJ (2010) Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene 29(19):2831–2842

    Article  PubMed  CAS  Google Scholar 

  • Carapito C, Klemm C, Aebersold R, Domon B (2009) Systematic LC-MS analysis of labile post-translational modifications in complex mixtures. J Proteome Res 8(5):2608–2614

    Article  PubMed  CAS  Google Scholar 

  • Carr SA, Huddleston MJ, Bean MF (1993) Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci 2(2):183–196

    Article  PubMed  CAS  Google Scholar 

  • Carrillo LD, Froemming JA, Mahal LK (2011) Targeted in vivo O-GlcNAc sensors reveal discrete compartment-specific dynamics during signal transduction. J Biol Chem 286(8):6650–6658

    Article  PubMed  CAS  Google Scholar 

  • Carrillo LD, Krishnamoorthy L, Mahal LK (2006) A cellular FRET-based sensor for beta-O-GlcNAc, a dynamic carbohydrate modification involved in signaling. J Am Chem Soc 128(46):14768–14769

    Article  PubMed  CAS  Google Scholar 

  • Champattanachai V, Marchase RB, Chatham JC (2007) Glucosamine protects neonatal cardiomyocytes from ischemia–reperfusion injury via increased protein-associated O-GlcNAc. Am J Physiol Cell Physiol 292(1):C178–C187

    Article  PubMed  CAS  Google Scholar 

  • Champattanachai V, Marchase RB, Chatham JC (2008) Glucosamine protects neonatal cardiomyocytes from ischemia–reperfusion injury via increased protein O-GlcNAc and increased mitochondrial Bcl-2. Am J Physiol Cell Physiol 294(6):C1509–C1520

    Article  PubMed  CAS  Google Scholar 

  • Chatham JC, Marchase RB (2010) The role of protein O-linked beta-N-acetylglucosamine in mediating cardiac stress responses. Biochim Biophys Acta 1800(2):57–66

    Article  PubMed  CAS  Google Scholar 

  • Chatham JC, Not LG, Fulop N, Marchase RB (2008) Hexosamine biosynthesis and protein O-glycosylation: the first line of defense against stress, ischemia, and trauma. Shock 29(4):431–440

    PubMed  CAS  Google Scholar 

  • Chen H, Ing BL, Robinson KA, Feagin AC, Buse MG, Quon MJ (1997) Effects of overexpression of glutamine: fructose-6-phosphate amidotransferase (GFAT) and glucosamine treatment on translocation of GLUT4 in rat adipose cells. Mol Cell Endocrinol 135(1):67–77

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Cole RN, Zaia J, Hart GW (2000) Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta. Biochemistry 39(38):11609–11620

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Hart GW (2001) Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta: post-translational regulation of turnover and transactivation activity. J Biol Chem 276(13):10570–10575

    Article  PubMed  CAS  Google Scholar 

  • Cheung WD, Hart GW (2008) AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation. J Biol Chem 283(19):13009–13020

    Article  PubMed  CAS  Google Scholar 

  • Cheung WD, Sakabe K, Housley MP, Dias WB, Hart GW (2008) O-linked beta-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins. J Biol Chem 283(49):33935–33941

    Article  PubMed  CAS  Google Scholar 

  • Chou T-Y, Hart GW, Dang CV (1995) c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J Biol Chem 270(32):18961–18965

    Article  PubMed  CAS  Google Scholar 

  • Clark PM, Dweck JF, Mason DE, Hart CR, Buck SB, Peters EC, Agnew BJ, Hsieh-Wilson LC (2008) Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J Am Chem Soc 130(35):11576–11577

    Article  PubMed  CAS  Google Scholar 

  • Comer FI, Hart GW (1999) O-GlcNAc and the control of gene expression. Biochim Biophys Acta 1473(1):161–171

    Article  PubMed  CAS  Google Scholar 

  • Comer FI, Hart GW (2001) Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II. Biochemistry 40(26):7845–7852

    Article  PubMed  CAS  Google Scholar 

  • Comtesse N, Maldener E, Meese E (2001) Identification of a nuclear variant of MGEA5, a cytoplasmic hyaluronidase and a beta-N-acetylglucosaminidase. Biochem Biophys Res Commun 283(3):634–640

    Article  PubMed  CAS  Google Scholar 

  • Crow MT, Mani K, Nam YJ, Kitsis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95(10):957–970

    Article  PubMed  CAS  Google Scholar 

  • Dias WB, Cheung WD, Hart GW (2012) O-GlcNAcylation of kinases. Biochem Biophys Res Commun 422(2):224–228

    Article  PubMed  CAS  Google Scholar 

  • Dias WB, Cheung WD, Wang Z, Hart GW (2009) Regulation of calcium/calmodulin-dependent kinase IV by O-GlcNAc modification. J Biol Chem 284(32):21327–21337

    Article  PubMed  CAS  Google Scholar 

  • Dong DL-Y, Hart GW (1994) Purification and characterization of an O-GlcNAc selective N-acetyl-beta-d-glucosaminidase from rat spleen cytosol. J Biol Chem 269(30):19321–19330

    PubMed  CAS  Google Scholar 

  • Dong H, Goico B, Martin M, Csernansky CA, Bertchume A, Csernansky JG (2004) Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience 127(3):601–609

    Article  PubMed  CAS  Google Scholar 

  • Dorfmueller HC, Borodkin VS, Blair DE, Pathak S, Navratilova I, van Aalten DM (2011) Substrate and product analogues as human O-GlcNAc transferase inhibitors. Amino Acids 40(3):781–792

    Article  PubMed  CAS  Google Scholar 

  • Dorfmueller HC, Borodkin VS, Schimpl M, Shepherd SM, Shpiro NA, van Aalten DM (2006) GlcNAcstatin: a picomolar, selective O-GlcNAcase inhibitor that modulates intracellular O-glcNAcylation levels. J Am Chem Soc 128(51):16484–16485

    Article  PubMed  CAS  Google Scholar 

  • Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M (2001) Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108(9):1341–1348

    PubMed  CAS  Google Scholar 

  • Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J, Brownlee M (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A 97(22):12222–12226

    Article  PubMed  CAS  Google Scholar 

  • Dudognon P, Maeder-Garavaglia C, Carpentier JL, Paccaud JP (2004) Regulation of a COPII component by cytosolic O-glycosylation during mitosis. FEBS Lett 561(1–3):44–50

    Article  PubMed  CAS  Google Scholar 

  • Ficko-Blean E, Stubbs KA, Nemirovsky O, Vocadlo DJ, Boraston AB (2008) Structural and mechanistic insight into the basis of mucopolysaccharidosis IIIB. Proc Natl Acad Sci U S A 105(18):6560–6565

    Article  PubMed  CAS  Google Scholar 

  • Finlay DR, Newmeyer DD, Price TM, Forbes DJ (1987) Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores. J Cell Biol 104(2):189–200

    Article  PubMed  CAS  Google Scholar 

  • Forsythe ME, Love DC, Lazarus BD, Kim EJ, Prinz WA, Ashwell G, Krause MW, Hanover JA (2006) Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proc Natl Acad Sci U S A 103(32):11952–11957

    Article  PubMed  CAS  Google Scholar 

  • Fujiki R, Hashiba W, Sekine H, Yokoyama A, Chikanishi T, Ito S, Imai Y, Kim J, He HH, Igarashi K, Kanno J, Ohtake F, Kitagawa H, Roeder RG, Brown M, Kato S (2011) GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 480(7378):557–560

    PubMed  CAS  Google Scholar 

  • Fulop N, Marchase RB, Chatham JC (2007a) Role of protein O-linked N-acetyl-glucosamine in mediating cell function and survival in the cardiovascular system. Cardiovasc Res 73(2):288–297

    Article  PubMed  CAS  Google Scholar 

  • Fulop N, Zhang Z, Marchase RB, Chatham JC (2007b) Glucosamine cardioprotection in perfused rat hearts associated with increased O-linked N-acetylglucosamine protein modification and altered p38 activation. Am J Physiol Heart Circ Physiol 292(5):H2227–H2236

    Article  PubMed  CAS  Google Scholar 

  • Gambetta MC, Oktaba K, Muller J (2009) Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science 325(5936):93–96

    Article  PubMed  CAS  Google Scholar 

  • Gandy JC, Rountree AE, Bijur GN (2006) Akt1 is dynamically modified with O-GlcNAc following treatments with PUGNAc and insulin-like growth factor-1. FEBS Lett 580(13):3051–3058

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Miyazaki J, Hart GW (2003) The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 beta-cells. Arch Biochem Biophys 415(2):155–163

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Parker GJ, Hart GW (2000) Streptozotocin-induced beta-cell death is independent of its inhibition of O-GlcNAcase in pancreatic Min6 cells. Arch Biochem Biophys 383(2):296–302

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Wells L, Comer FI, Parker GJ, Hart GW (2001) Dynamic O-glycosylation of nuclear and cytosolic proteins—cloning and characterization of a neutral, cytosolic beta-N-acetylglucosam inidase from human brain. J Biol Chem 276(13):9838–9845

    Article  PubMed  CAS  Google Scholar 

  • Gloster TM, Zandberg WF, Heinonen JE, Shen DL, Deng L, Vocadlo DJ (2011) Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat Chem Biol 7(3):174–181

    Article  PubMed  CAS  Google Scholar 

  • Goldberg H, Whiteside C, Fantus IG (2011) O-linked beta-N-acetylglucosamine supports p38 MAPK activation by high glucose in glomerular mesangial cells. Am J Physiol Endocrinol Metab 301(4):E713–E726

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg I, Grossman E, Jacobson KA, Shneyvays V, Shainberg A (2001) Angiotensin II-induced apoptosis in rat cardiomyocyte culture: a possible role of AT1 and AT2 receptors. J Hypertens 19(9):1681–1689

    Article  PubMed  CAS  Google Scholar 

  • Golks A, Tran TT, Goetschy JF, Guerini D (2007) Requirement for O-linked N-acetylglucosaminyltransferase in lymphocytes activation. EMBO J 26(20):4368–4379

    Article  PubMed  CAS  Google Scholar 

  • Greig KT, Antonchuk J, Metcalf D, Morgan PO, Krebs DL, Zhang JG, Hacking DF, Bode L, Robb L, Kranz C, de Graaf C, Bahlo M, Nicola NA, Nutt SL, Freeze HH, Alexander WS, Hilton DJ, Kile BT (2007) Agm1/Pgm3-mediated sugar nucleotide synthesis is essential for hematopoiesis and development. Mol Cell Biol 27(16):5849–5859

    Article  PubMed  CAS  Google Scholar 

  • Greis KD, Gibson W, Hart GW (1994) Site-specific glycosylation of the human cytomegalovirus tegument basic phosphoprotein (UL32) at serine 921 and serine 952. J Virol 68(12):8339–8349

    PubMed  CAS  Google Scholar 

  • Griffith LS, Schmitz B (1999) O-linked N-acetylglucosamine levels in cerebellar neurons respond reciprocally to pertubations of phosphorylation. Eur J Biochem 262(3):824–831

    Article  PubMed  CAS  Google Scholar 

  • Gross BJ, Kraybill BC, Walker S (2005) Discovery of O-GlcNAc transferase inhibitors. J Am Chem Soc 127(42):14588–14589

    Article  PubMed  CAS  Google Scholar 

  • Guinez C, Losfeld ME, Cacan R, Michalski JC, Lefebvre T (2006) Modulation of HSP70 GlcNAc-directed lectin activity by glucose availability and utilization. Glycobiology 16(1):22–28

    Article  PubMed  CAS  Google Scholar 

  • Guinez C, Mir AM, Dehennaut V, Cacan R, Harduin-Lepers A, Michalski JC, Lefebvre T (2008) Protein ubiquitination is modulated by O-GlcNAc glycosylation. FASEB J 22(8):2901–2911

    Article  PubMed  CAS  Google Scholar 

  • Guinez C, Mir AM, Leroy Y, Cacan R, Michalski JC, Lefebvre T (2007) Hsp70-GlcNAc-binding activity is released by stress, proteasome inhibition, and protein misfolding. Biochem Biophys Res Commun 361(2):414–420

    Article  PubMed  CAS  Google Scholar 

  • Guinez C, Mir AM, Martin N, Leprince D, Michalski JC, Vergoten G, Lefebvre T (2010) Arginine 469 is a pivotal residue for the Hsc70-GlcNAc-binding property. Biochem Biophys Res Commun 400(4):537–542

    Article  PubMed  CAS  Google Scholar 

  • Gurcel C, Vercoutter-Edouart AS, Fonbonne C, Mortuaire M, Salvador A, Michalski JC, Lemoine J (2008) Identification of new O-GlcNAc modified proteins using a click-chemistry-based tagging. Anal Bioanal Chem 390(8):2089–2097

    Article  PubMed  CAS  Google Scholar 

  • Haberhausen G, Schmitt I, Kohler A, Peters U, Rider S, Chelly J, Terwilliger JD, Monaco AP, Muller U (1995) Assignment of the dystonia-parkinsonism syndrome locus, DYT3, to a small region within a 1.8-Mb YAC contig of Xq13.1. Am J Hum Genet 57(3):644–650

    PubMed  CAS  Google Scholar 

  • Haltiwanger RS, Blomberg MA, Hart GW (1992) Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetylglucosaminyltransferase. J Biol Chem 267(13):9005–9013

    PubMed  CAS  Google Scholar 

  • Haltiwanger RS, Busby S, Grove K, Li S, Mason D, Medina L, Moloney D, Philipsberg G, Scartozzi R (1997) O-glycosylation of nuclear and cytoplasmic proteins: regulation analogous to phosphorylation? BiochemBiophysResCommun 231:237–242

    CAS  Google Scholar 

  • Haltiwanger RS, Grove K, Philipsberg GA (1998) Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-beta-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate. J Biol Chem 273(6):3611–3617

    Article  PubMed  CAS  Google Scholar 

  • Hamiel CR, Pinto S, Hau A, Wischmeyer PE (2009) Glutamine enhances heat shock protein 70 expression via increased hexosamine biosynthetic pathway activity. Am J Physiol Cell Physiol 297(6):C1509–C1519

    Article  PubMed  CAS  Google Scholar 

  • Han I, Kudlow JE (1997) Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol Cell Biol 17(5):2550–2558

    PubMed  CAS  Google Scholar 

  • Hanover JA, Forsythe ME, Hennessey PT, Brodigan TM, Love DC, Ashwell G, Krause M (2005) A Caenorhabditis elegans model of insulin resistance: altered macronutrient storage and dauer formation in an OGT-1 knockout. Proc Natl Acad Sci U S A 102(32):11266–11271

    Article  PubMed  CAS  Google Scholar 

  • Hanover JA, Yu S, Lubas WB, Shin SH, Ragano-Caracciola M, Kochran J, Love DC (2003) Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys 409(2):287–297

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12(10):383–388

    Article  PubMed  CAS  Google Scholar 

  • Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825–858

    Article  PubMed  CAS  Google Scholar 

  • Heckel D, Comtesse N, Brass N, Blin N, Zang KD, Meese E (1998) Novel immunogenic antigen homologous to hyaluronidase in meningioma. Hum Mol Genet 7(12):1859–1872

    Article  PubMed  CAS  Google Scholar 

  • Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4(11):600–609

    Article  PubMed  CAS  Google Scholar 

  • Housley MP, Rodgers JT, Udeshi ND, Kelly TJ, Shabanowitz J, Hunt DF, Puigserver P, Hart GW (2008) O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem 283(24):16283–16292

    Article  PubMed  CAS  Google Scholar 

  • Housley MP, Udeshi ND, Rodgers JT, Shabanowitz J, Puigserver P, Hunt DF, Hart GW (2009) A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J Biol Chem 284(8):5148–5157

    Article  PubMed  CAS  Google Scholar 

  • Hsieh TJ, Lin T, Hsieh PC, Liao MC, Shin SJ (2012) Suppression of glutamine:fructose-6-phosphate amidotransferase-1 inhibits adipogenesis in 3T3-L1 adipocytes. J Cell Physiol 227(1):108–115

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Belke D, Suarez J, Swanson E, Clark R, Hoshijima M, Dillmann WH (2005) Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ Res 96(9):1006–1013

    Article  PubMed  CAS  Google Scholar 

  • Huang JB, Clark AJ, Petty HR (2007) The hexosamine biosynthesis pathway negatively regulates IL-2 production by Jurkat T cells. Cell Immunol 245(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Huddleston MJ, Bean MF, Carr SA (1993) Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Chem 65(7):877–884

    Article  PubMed  CAS  Google Scholar 

  • Hunton DL, Zou L, Pang Y, Marchase RB (2004) Adult rat cardiomyocytes exhibit capacitative calcium entry. Am J Physiol Heart Circ Physiol 286(3):H1124–H1132

    Article  PubMed  CAS  Google Scholar 

  • Hwang SY, Shin JH, Hwang JS, Kim SY, Shin JA, Oh ES, Oh S, Kim JB, Lee JK, Han IO (2010) Glucosamine exerts a neuroprotective effect via suppression of inflammation in rat brain ischemia/reperfusion injury. Glia 58(15):1881–1892

    Article  PubMed  Google Scholar 

  • Ise H, Kobayashi S, Goto M, Sato T, Kawakubo M, Takahashi M, Ikeda U, Akaike T (2010) Vimentin and desmin possess GlcNAc-binding lectin-like properties on cell surfaces. Glycobiology 20(7):843–864

    Article  PubMed  CAS  Google Scholar 

  • Jackson SP, Tjian R (1989) Purification and analysis of RNA polymerase II transcription factors by using wheat germ agglutinin affinity chromatography. Proc Natl Acad Sci U S A 86(6):1781–1785

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen KT, Iverfeldt K (2011) O-GlcNAcylation increases non-amyloidogenic processing of the amyloid-beta precursor protein (APP). Biochem Biophys Res Commun 404(3):882–886

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen SE, Binkowski KA, Olszewski NE (1996) SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction Arabidopsis. Proc Natl Acad Sci U S A 93(17):9292–9296

    Article  PubMed  CAS  Google Scholar 

  • James LR, Fantus IG, Goldberg H, Ly H, Scholey JW (2000) Overexpression of GFAT activates PAI-1 promoter in mesangial cells. Am J Physiol Renal Physiol 279(4):F718–F727

    PubMed  CAS  Google Scholar 

  • Jarrar D, Chaudry IH, Wang P (1999) Organ dysfunction following hemorrhage and sepsis: mechanisms and therapeutic approaches. Int J Mol Med 4(6):575–583

    PubMed  CAS  Google Scholar 

  • Jiang M-S, Hart GW (1997) A subpopulation of estrogen receptors are modified by O-Linked N-acetylglucosamine. JBiolChem 272:2421–2498

    CAS  Google Scholar 

  • Jinek M, Rehwinkel J, Lazarus BD, Izaurralde E, Hanover JA, Conti E (2004) The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat Struct Mol Biol 11(10):1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Jones SP, Zachara NE, Ngoh GA, Hill BG, Teshima Y, Bhatnagar A, Hart GW, Marban E (2008) Cardioprotection by N-acetylglucosamine linkage to cellular proteins. Circulation 117(9):1172–1182

    Article  PubMed  CAS  Google Scholar 

  • Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113(11):1535–1549

    PubMed  CAS  Google Scholar 

  • Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs LG, Anversa P (1997) Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol 29(3):859–870

    Article  PubMed  CAS  Google Scholar 

  • Kang ES, Han D, Park J, Kwak TK, Oh MA, Lee SA, Choi S, Park ZY, Kim Y, Lee JW (2008) O-GlcNAc modulation at Akt1 Ser473 correlates with apoptosis of murine pancreatic beta cells. Exp Cell Res 314(11–12):2238–2248

    Article  PubMed  CAS  Google Scholar 

  • Kang JE, Cirrito JR, Dong H, Csernansky JG, Holtzman DM (2007) Acute stress increases interstitial fluid amyloid-beta via corticotropin-releasing factor and neuronal activity. Proc Natl Acad Sci U S A 104(25):10673–10678

    Article  PubMed  CAS  Google Scholar 

  • Kawauchi K, Araki K, Tobiume K, Tanaka N (2009) Loss of p53 enhances catalytic activity of IKKbeta through O-linked beta-N-acetyl glucosamine modification. Proc Natl Acad Sci U S A 106(9):3431–3436

    Article  PubMed  CAS  Google Scholar 

  • Kazemi Z, Chang H, Haserodt S, McKen C, Zachara NE (2010) O-linked beta-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3beta-dependent manner. J Biol Chem 285(50):39096–39107

    Article  PubMed  CAS  Google Scholar 

  • Kearse KP, Hart GW (1991) Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins. Proc Natl Acad Sci U S A 88(5):1701–1705

    Article  PubMed  CAS  Google Scholar 

  • Kelly WG, Dahmus ME, Hart GW (1993) RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J Biol Chem 268(14):10416–10424

    PubMed  CAS  Google Scholar 

  • Kem DC, Johnson EI, Capponi AM, Chardonnens D, Lang U, Blondel B, Koshida H, Vallotton MB (1991) Effect of angiotensin II on cytosolic free calcium in neonatal rat cardiomyocytes. Am J Physiol 261(1 Pt 1):C77–C85

    PubMed  CAS  Google Scholar 

  • Khidekel N, Arndt S, Lamarre-Vincent N, Lippert A, Poulin-Kerstien KG, Ramakrishnan B, Qasba PK, Hsieh-Wilson LC (2003) A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J Am Chem Soc 125(52):16162–16163

    Article  PubMed  CAS  Google Scholar 

  • Khidekel N, Ficarro SB, Clark PM, Bryan MC, Swaney DL, Rexach JE, Sun YE, Coon JJ, Peters EC, Hsieh-Wilson LC (2007) Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol 3(6):339–348

    Article  PubMed  CAS  Google Scholar 

  • Khidekel N, Ficarro SB, Peters EC, Hsieh-Wilson LC (2004) Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci U S A 101(36):13132–13137

    Article  PubMed  CAS  Google Scholar 

  • Kim C, Nam DW, Park SY, Song H, Hong HS, Boo JH, Jung ES, Kim Y, Baek JY, Kim KS, Cho JW, Mook-Jung I (2012) O-linked beta-N-acetylglucosaminidase inhibitor attenuates beta-amyloid plaque and rescues memory impairment. Neurobiol Aging 34(1):275–285

    Article  PubMed  CAS  Google Scholar 

  • Kim EJ, Kang DO, Love DC, Hanover JA (2006a) Enzymatic characterization of O-GlcNAcase isoforms using a fluorogenic GlcNAc substrate. Carbohydr Res 341(8):971–982

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Sung JY, Um JW, Hattori N, Mizuno Y, Tanaka K, Paik SR, Kim J, Chung KC (2003) Parkin cleaves intracellular alpha-synuclein inclusions via the activation of calpain. J Biol Chem 278(43):41890–41899

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Song M, Oh YS, Heo K, Choi JW, Park JM, Kim SH, Lim S, Kwon HM, Ryu SH, Suh PG (2006b) Inhibition of phospholipase C-beta1-mediated signaling by O-GlcNAc modification. J Cell Physiol 207(3):689–696

    Article  PubMed  CAS  Google Scholar 

  • Knapp S, Abdo M, Ajayi K, Huhn RA, Emge TJ, Kim EJ, Hanover JA (2007) Tautomeric modification of GlcNAc-thiazoline. Org Lett 9(12):2321–2324

    Article  PubMed  CAS  Google Scholar 

  • Konrad RJ, Zhang F, Hale JE, Knierman MD, Becker GW, Kudlow JE (2002) Alloxan is an inhibitor of the enzyme O-linked N-acetylglucosamine transferase. Biochem Biophys Res Commun 293(1):207–212

    Article  PubMed  CAS  Google Scholar 

  • Kreppel LK, Blomberg MA, Hart GW (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 272(14):9308–9315

    Article  PubMed  CAS  Google Scholar 

  • Kreppel LK, Hart GW (1999) Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J Biol Chem 274(45):32015–32022

    Article  PubMed  CAS  Google Scholar 

  • Ku NO, Toivola DM, Strnad P, Omary MB (2010) Cytoskeletal keratin glycosylation protects epithelial tissue from injury. Nat Cell Biol 12(9):876–885

    Article  PubMed  CAS  Google Scholar 

  • Kuo M, Zilberfarb V, Gangneux N, Christeff N, Issad T (2008) O-GlcNAc modification of FoxO1 increases its transcriptional activity: a role in the glucotoxicity phenomenon? Biochimie 90(5):679–685

    Article  PubMed  CAS  Google Scholar 

  • Kwak TK, Kim H, Jung O, Lee SA, Kang M, Kim HJ, Park JM, Kim SH, Lee JW (2010) Glucosamine treatment-mediated O-GlcNAc modification of paxillin depends on adhesion state of rat insulinoma INS-1 cells. J Biol Chem 285(46):36021–36031

    Article  PubMed  CAS  Google Scholar 

  • Kwon NS, Lee SH, Choi CS, Kho T, Lee HS (1994) Nitric oxide generation from streptozotocin. FASEB J: Off Publ Fed Am Soc Exp Biol 8(8):529–533

    CAS  Google Scholar 

  • Laczy B, Marsh SA, Brocks CA, Wittmann I, Chatham JC (2010) Inhibition of O-GlcNAcase in perfused rat hearts by NAG-thiazolines at the time of reperfusion is cardioprotective in an O-GlcNAc dependent manner. Am J Physiol Heart Circ Physiol 299(5):H1715–H1727

    Article  PubMed  CAS  Google Scholar 

  • Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S (2011) Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469(7331):564–567

    Article  PubMed  CAS  Google Scholar 

  • Lee RT, Lee YC (2000) Affinity enhancement by multivalent lectin-carbohydrate interaction. Glycoconj J 17(7–9):543–551

    Article  PubMed  CAS  Google Scholar 

  • Lee TN, Alborn WE, Knierman MD, Konrad RJ (2006) Alloxan is an inhibitor of O-GlcNAc-selective N-acetyl-beta-d-glucosaminidase. Biochem Biophys Res Commun 350(4):1038–1043

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre T, Cieniewski C, Lemoine J, Guerardel Y, Leroy Y, Zanetta JP, Michalski JC (2001) Identification of N-acetyl-d-glucosamine-specific lectins from rat liver cytosolic and nuclear compartments as heat-shock proteins. Biochem J 360(Pt 1):179–188

    Article  PubMed  CAS  Google Scholar 

  • Lim K, Chang HI (2010) O-GlcNAc inhibits interaction between Sp1 and sterol regulatory element binding protein 2. Biochem Biophys Res Commun 393(2):314–318

    Article  PubMed  CAS  Google Scholar 

  • Lim KH, Chang HI (2006) O-linked N-acetylglucosamine suppresses thermal aggregation of Sp1. FEBS Lett 580(19):4645–4652

    Article  PubMed  CAS  Google Scholar 

  • Lima VV, Spitler K, Choi H, Webb RC, Tostes RC (2012) O-GlcNAcylation and oxidation of proteins: is signalling in the cardiovascular system becoming sweeter? Clin Sci (Lond) 123(8):473–486

    Article  CAS  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004a) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci U S A 101(29):10804–10809

    Article  PubMed  CAS  Google Scholar 

  • Liu HR, Gao F, Tao L, Yan WL, Gao E, Christopher TA, Lopez BL, Hu A, Ma XL (2004b) Antiapoptotic mechanisms of benidipine in the ischemic/reperfused heart. Br J Pharmacol 142(4):627–634

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Marchase RB, Chatham JC (2007) Increased O-GlcNAc levels during reperfusion lead to improved functional recovery and reduced calpain proteolysis. Am J Physiol Heart Circ Physiol 293(3):H1391–H1399

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Pang Y, Chang T, Bounelis P, Chatham JC, Marchase RB (2006) Increased hexosamine biosynthesis and protein O-GlcNAc levels associated with myocardial protection against calcium paradox and ischemia. J Mol Cell Cardiol 40(2):303–312

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Paterson AJ, Konrad RJ, Parlow AF, Jimi S, Roh M, Chin E Jr, Kudlow JE (2002) Streptozotocin, an O-GlcNAcase inhibitor, blunts insulin and growth hormone secretion. Mol Cell Endocrinol 194(1–2):135–146

    Article  PubMed  CAS  Google Scholar 

  • Love DC, Ghosh S, Mondoux MA, Fukushige T, Wang P, Wilson MA, Iser WB, Wolkow CA, Krause MW, Hanover JA (2010) Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity. Proc Natl Acad Sci U S A 107(16):7413–7418

    Article  PubMed  CAS  Google Scholar 

  • Love DC, Kochan J, Cathey RL, Shin SH, Hanover JA (2003) Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. J Cell Sci 116(Pt 4):647–654

    Article  PubMed  CAS  Google Scholar 

  • Lubas WA, Frank DW, Krause M, Hanover JA (1997) O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J Biol Chem 272(14):9316–9324

    Article  PubMed  CAS  Google Scholar 

  • Lubas WA, Hanover JA (2000) Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem 275(15):10983–10988

    Article  PubMed  CAS  Google Scholar 

  • Lundquist JJ, Toone EJ (2002) The cluster glycoside effect. Chem Rev 102(2):555–578

    Article  PubMed  CAS  Google Scholar 

  • Macauley MS, Bubb AK, Martinez-Fleites C, Davies GJ, Vocadlo DJ (2008) Elevation of global O-GlcNAc levels in 3T3-L1 adipocytes by selective inhibition of O-GlcNAcase does not induce insulin resistance. J Biol Chem 283(50):34687–34695

    Article  PubMed  CAS  Google Scholar 

  • Macauley MS, Whitworth GE, Debowski AW, Chin D, Vocadlo DJ (2005) O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors. J Biol Chem 280(27):25313–25322

    Article  PubMed  CAS  Google Scholar 

  • Machida M, Jigami Y (1994) Glycosylated DNA-binding proteins from filamentous fungus, Aspergillus oryzae: modification with N-acetylglucosamine monosaccharide through an O-glycosidic linkage. BiosciBiotechnolBiochem 58:344–348

    CAS  Google Scholar 

  • Marotta NP, Cherwien CA, Abeywardana T, Pratt MR (2012) O-GlcNAc modification prevents peptide-dependent acceleration of alpha-synuclein aggregation. ChemBioChem 13(18):2665–2670

    Article  PubMed  CAS  Google Scholar 

  • Marshall S, Bacote V, Traxinger RR (1991) Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem 266(8):4706–4712

    PubMed  CAS  Google Scholar 

  • Marshall S, Duong T, Wu T, Hering MA, Yada J, Higgins S, Orbus RJ, Yan ZH, Rumberger JM (2003) Enhanced expression of uridine diphosphate-N-acetylglucosaminyl transferase (OGT) in a stable, tetracycline-inducible HeLa cell line using histone deacetylase inhibitors: kinetics of cytosolic OGT accumulation and nuclear translocation. Anal Biochem 319(2):304–313

    Article  PubMed  CAS  Google Scholar 

  • Marshall S, Nadeau O, Yamasaki K (2004) Dynamic actions of glucose and glucosamine on hexosamine biosynthesis in isolated adipocytes: differential effects on glucosamine 6-phosphate, UDP-N-acetylglucosamine, and ATP levels. J Biol Chem 279(34):35313–35319

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Fleites C, Macauley MS, He Y, Shen DL, Vocadlo DJ, Davies GJ (2008) Structure of an O-GlcNAc transferase homolog provides insight into intracellular glycosylation. Nat Struct Mol Biol 15(7):764–765

    Article  PubMed  CAS  Google Scholar 

  • McClain DA (2002) Hexosamines as mediators of nutrient sensing and regulation in diabetes. J Diabetes Complications 16(1):72–80

    Article  PubMed  Google Scholar 

  • Meldrum DR, Cleveland JC Jr, Mitchell MB, Sheridan BC, Gamboni-Robertson F, Harken AH, Banerjee A (1996) Protein kinase C mediates Ca2(+)-induced cardioadaptation to ischemia–reperfusion injury. Am J Physiol 271(3 Pt 2):R718–R726

    PubMed  CAS  Google Scholar 

  • Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JE, Shabanowitz J, Hunt DF (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764(12):1811–1822

    Article  PubMed  CAS  Google Scholar 

  • Mio T, Yamada-Okabe T, Arisawa M, Yamada-Okabe H (1999) Saccharomyces cerevisiae GNA1, an essential gene encoding a novel acetyltransferase involved in UDP-N-acetylglucosamine synthesis. J Biol Chem 274(1):424–429

    Article  PubMed  CAS  Google Scholar 

  • Miura T, Miki T (2009) GSK-3beta, a therapeutic target for cardiomyocyte protection. Circ J 73(7):1184–1192

    Article  PubMed  CAS  Google Scholar 

  • Monsigny M, Roche AC, Sene C, Maget-Dana R, Delmotte F (1980) Sugar-lectin interactions: how does wheat-germ agglutinin bind sialoglycoconjugates? Eur J Biochem / FEBS 104(1):147–153

    Article  CAS  Google Scholar 

  • Murphy E, Imahashi K, Steenbergen C (2005) Bcl-2 regulation of mitochondrial energetics. Trends Cardiovasc Med 15(8):283–290

    Article  PubMed  CAS  Google Scholar 

  • Musicki B, Kramer MF, Becker RE, Burnett AL (2005) Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proc Natl Acad Sci U S A 102(33):11870–11875

    Article  PubMed  CAS  Google Scholar 

  • Myers SA, Panning B, Burlingame AL (2011) Polycomb repressive complex 2 is necessary for the normal site-specific O-GlcNAc distribution in mouse embryonic stem cells. Proc Natl Acad Sci U S A 108(23):9490–9495

    Article  PubMed  CAS  Google Scholar 

  • Nagy T, Champattanachai V, Marchase RB, Chatham JC (2006) Glucosamine inhibits angiotensin II-induced cytoplasmic Ca2+ elevation in neonatal cardiomyocytes via protein-associated O-linked N-acetylglucosamine. Am J Physiol Cell Physiol 290(1):C57–C65

    Article  PubMed  CAS  Google Scholar 

  • Nandi A, Sprung R, Barma DK, Zhao Y, Kim SC, Falck JR (2006) Global identification of O-GlcNAc-modified proteins. Anal Chem 78(2):452–458

    Article  PubMed  CAS  Google Scholar 

  • Nathan C (2002) Points of control in inflammation. Nature 420(6917):846–852

    Article  PubMed  CAS  Google Scholar 

  • Ngoh GA, Facundo HT, Hamid T, Dillmann W, Zachara NE, Jones SP (2009a) Unique hexosaminidase reduces metabolic survival signal and sensitizes cardiac myocytes to hypoxia/reoxygenation injury. Circ Res 104(1):41–49

    Article  PubMed  CAS  Google Scholar 

  • Ngoh GA, Facundo HT, Zafir A, Jones SP (2010) O-GlcNAc signaling in the cardiovascular system. Circ Res 107(2):171–185

    Article  PubMed  CAS  Google Scholar 

  • Ngoh GA, Hamid T, Prabhu SD, Jones SP (2009b) O-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death. Am J Physiol Heart Circ Physiol 297(5):H1711–H1719

    Article  PubMed  CAS  Google Scholar 

  • Ngoh GA, Watson LJ, Facundo HT, Dillmann W, Jones SP (2008) Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition. J Mol Cell Cardiol 45(2):313–325

    Article  PubMed  CAS  Google Scholar 

  • Ngoh GA, Watson LJ, Facundo HT, Jones SP (2011) Augmented O-GlcNAc signaling attenuates oxidative stress and calcium overload in cardiomyocytes. Amino Acids 40(3):895–911

    Article  PubMed  CAS  Google Scholar 

  • Nollen EA, Morimoto RI (2002) Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci 115(Pt 14):2809–2816

    PubMed  CAS  Google Scholar 

  • Not LG, Brocks CA, Vamhidy L, Marchase RB, Chatham JC (2010) Increased O-linked beta-N-acetylglucosamine levels on proteins improves survival, reduces inflammation and organ damage 24 hours after trauma-hemorrhage in rats. Crit Care Med 38(2):562–571

    Article  PubMed  CAS  Google Scholar 

  • Not LG, Marchase RB, Fulop N, Brocks CA, Chatham JC (2007) Glucosamine administration improves survival rate after severe hemorrhagic shock combined with trauma in rats. Shock 28(3):345–352

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell N, Zachara NE, Hart GW, Marth JD (2004) Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol Cell Biol 24(4):1680–1690

    Article  PubMed  CAS  Google Scholar 

  • Okuyama R, Yachi M (2001) Cytosolic O-GlcNAc accumulation is not involved in beta-cell death in HIT-T15 or Min6. Biochem Biophys Res Commun 287(2):366–371

    Article  PubMed  CAS  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  PubMed  CAS  Google Scholar 

  • Ong SE, Kratchmarova I, Mann M (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2(2):173–181

    Article  PubMed  CAS  Google Scholar 

  • Ozcan S, Andrali SS, Cantrell JE (2010) Modulation of transcription factor function by O-GlcNAc modification. Biochim Biophys Acta 1799(5–6):353–364

    PubMed  Google Scholar 

  • Pang Y, Hunton DL, Bounelis P, Marchase RB (2002) Hyperglycemia inhibits capacitative calcium entry and hypertrophy in neonatal cardiomyocytes. Diabetes 51(12):3461–3467

    Article  PubMed  CAS  Google Scholar 

  • Pathak S, Borodkin VS, Albarbarawi O, Campbell DG, Ibrahim A, van Aalten DM (2012) O-GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release. EMBO J 31(6):1394–1404

    Article  PubMed  CAS  Google Scholar 

  • Patti ME, Virkamaki A, Landaker EJ, Kahn CR, Yki-Jarvinen H (1999) Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance of early postreceptor insulin signaling events in skeletal muscle. Diabetes 48(8):1562–1571

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Rengifo J, Gibson CJ, Winkler E, Collin T, Ehrlich BE (2007) Regulation of the inositol 1,4,5-trisphosphate receptor type I by O-GlcNAc glycosylation. J Neurosci 27(50):13813–13821

    Article  PubMed  CAS  Google Scholar 

  • Rexach JE, Clark PM, Hsieh-Wilson LC (2008) Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat Chem Biol 4(2):97–106

    Article  PubMed  CAS  Google Scholar 

  • Rexach JE, Rogers CJ, Yu SH, Tao J, Sun YE, Hsieh-Wilson LC (2010) Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags. Nat Chem Biol 6(9):645–651

    Article  PubMed  CAS  Google Scholar 

  • Rissman RA, Lee KF, Vale W, Sawchenko PE (2007) Corticotropin-releasing factor receptors differentially regulate stress-induced tau phosphorylation. J Neurosci 27(24):6552–6562

    Article  PubMed  CAS  Google Scholar 

  • Rissman RA, Staup MA, Lee AR, Justice NJ, Rice KC, Vale W, Sawchenko PE (2012) Corticotropin-releasing factor receptor-dependent effects of repeated stress on tau phosphorylation, solubility, and aggregation. Proc Natl Acad Sci U S A 109(16):6277–6282

    Article  PubMed  CAS  Google Scholar 

  • Roos MD, Xie W, Su K, Clark JA, Yang X, Chin E, Paterson AJ, Kudlow JE (1998) Streptozotocin, an analog of N-acetylglucosamine, blocks the removal of O-GlcNAc from intracellular proteins. Proc Assoc Am Physicians 110(5):422–432

    PubMed  CAS  Google Scholar 

  • Roquemore EP, Chou TY, Hart GW (1994) Detection of O-linked N-acetylglucosamine (O-GlcNAc) on cytoplasmic and nuclear proteins. Methods Enzymol 230:443–460

    Article  PubMed  CAS  Google Scholar 

  • Ross SA, Chen X, Hope HR, Sun S, McMahon EG, Broschat K, Gulve EA (2000) Development and comparison of two 3T3-L1 adipocyte models of insulin resistance: increased glucose flux vs glucosamine treatment. Biochem Biophys Res Commun 273(3):1033–1041

    Article  PubMed  CAS  Google Scholar 

  • Ryu IH, Do SI (2011) Denitrosylation of S-nitrosylated OGT is triggered in LPS-stimulated innate immune response. Biochem Biophys Res Commun 408(1):52–57

    Article  PubMed  CAS  Google Scholar 

  • Sakabe K, Wang Z, Hart GW (2010) Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci U S A 107(46):19915–19920

    Article  PubMed  CAS  Google Scholar 

  • Sakurai H, Miyoshi H, Mizukami J, Sugita T (2000) Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1. FEBS Lett 474(2–3):141–145

    Article  PubMed  CAS  Google Scholar 

  • Sayat R, Leber B, Grubac V, Wiltshire L, Persad S (2008) O-GlcNAc-glycosylation of beta-catenin regulates its nuclear localization and transcriptional activity. Exp Cell Res 314(15):2774–2787

    Article  PubMed  CAS  Google Scholar 

  • Shafi R, Lyer SPN, Ellies LG, O’Donnell N, Marek KW, Chui D, Hart GW, Marth JD (2000) The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc Natl Acad Sci USA 97(11):5735–5739

    Article  PubMed  CAS  Google Scholar 

  • Shao Q, Saward L, Zahradka P, Dhalla NS (1998) Ca2+ mobilization in adult rat cardiomyocytes by angiotensin type 1 and 2 receptors. Biochem Pharmacol 55(9):1413–1418

    Article  PubMed  CAS  Google Scholar 

  • Shen A, Kamp HD, Grundling A, Higgins DE (2006) A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes Dev 20(23):3283–3295

    Article  PubMed  CAS  Google Scholar 

  • Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293(5528):263–269

    Article  PubMed  CAS  Google Scholar 

  • Shin SH, Love DC, Hanover JA (2011) Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis. Amino Acids 40(3):885–893

    Article  PubMed  CAS  Google Scholar 

  • Shrikhande GV, Scali ST, da Silva CG, Damrauer SM, Csizmadia E, Putheti P, Matthey M, Arjoon R, Patel R, Siracuse JJ, Maccariello ER, Andersen ND, Monahan T, Peterson C, Essayagh S, Studer P, Guedes RP, Kocher O, Usheva A, Veves A, Kaczmarek E, Ferran C (2010) O-glycosylation regulates ubiquitination and degradation of the anti-inflammatory protein A20 to accelerate atherosclerosis in diabetic ApoE-null mice. PLoS One 5(12):e14240

    Article  PubMed  CAS  Google Scholar 

  • Sinclair DA, Syrzycka M, Macauley MS, Rastgardani T, Komljenovic I, Vocadlo DJ, Brock HW, Honda BM (2009) Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc Natl Acad Sci U S A 106(32):13427–13432

    Article  PubMed  CAS  Google Scholar 

  • Singleton KD, Wischmeyer PE (2008) Glutamine induces heat shock protein expression via O-glycosylation and phosphorylation of HSF-1 and Sp1. JPEN J Parenter Enteral Nutr 32(4):371–376

    Article  PubMed  CAS  Google Scholar 

  • Slawson C, Copeland RJ, Hart GW (2010) O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem Sci 35(10):547–555

    Article  PubMed  CAS  Google Scholar 

  • Slawson C, Lakshmanan T, Knapp S, Hart GW (2008) A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. Mol Biol Cell 19(10):4130–4140

    Article  PubMed  CAS  Google Scholar 

  • Slawson C, Zachara NE, Vosseller K, Cheung WD, Lane MD, Hart GW (2005) Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J Biol Chem 280(38):32944–32956

    Article  PubMed  CAS  Google Scholar 

  • Snow CM, Senior A, Gerace L (1987) Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J Cell Biol 104(5):1143–1156

    Article  PubMed  CAS  Google Scholar 

  • Sobott F, Watt SJ, Smith J, Edelmann MJ, Kramer HB, Kessler BM (2009) Comparison of CID versus ETD based MS/MS fragmentation for the analysis of protein ubiquitination. J Am Soc Mass Spectrom 20(9):1652–1659

    Article  PubMed  CAS  Google Scholar 

  • Soesanto YA, Luo B, Jones D, Taylor R, Gabrielsen JS, Parker G, McClain DA (2008) Regulation of Akt signaling by O-GlcNAc in euglycemia. Am J Physiol Endocrinol Metab 295(4):E974–E980

    Article  PubMed  CAS  Google Scholar 

  • Sohn KC, Lee KY, Park JE, Do SI (2004) OGT functions as a catalytic chaperone under heat stress response: a unique defense role of OGT in hyperthermia. Biochem Biophys Res Commun 322(3):1045–1051

    Article  PubMed  CAS  Google Scholar 

  • Song M, Kim HS, Park JM, Kim SH, Kim IH, Ryu SH, Suh PG (2008) o-GlcNAc transferase is activated by CaMKIV-dependent phosphorylation under potassium chloride-induced depolarization in NG-108-15 cells. Cell Signal 20(1):94–104

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    Article  PubMed  CAS  Google Scholar 

  • Sprung R, Nandi A, Chen Y, Kim SC, Barma D, Falck JR, Zhao Y (2005) Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J Proteome Res 4(3):950–957

    Article  PubMed  CAS  Google Scholar 

  • St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408

    Article  PubMed  CAS  Google Scholar 

  • Sumegi M, Hunyadi-Gulyas E, Medzihradszky KF, Udvardy A (2003) 26S proteasome subunits are O-linked N-acetylglucosamine-modified in Drosophila melanogaster. Biochem Biophys Res Commun 312(4):1284–1289

    Article  PubMed  CAS  Google Scholar 

  • Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101(26):9528–9533

    Article  PubMed  CAS  Google Scholar 

  • Tarrant MK, Rho HS, Xie Z, Jiang YL, Gross C, Culhane JC, Yan G, Qian J, Ichikawa Y, Matsuoka T, Zachara N, Etzkorn FA, Hart GW, Jeong JS, Blackshaw S, Zhu H, Cole PA (2012) Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis. Nat Chem Biol 8(3):262–269

    Article  PubMed  CAS  Google Scholar 

  • Teo CF, Ingale S, Wolfert MA, Elsayed GA, Not LG, Chatham JC, Wells L, Boons GJ (2010) Glycopeptide-specific monoclonal antibodies suggest new roles for O-GlcNAc. Nat Chem Biol 6(5):338–343

    Article  PubMed  CAS  Google Scholar 

  • Toleman C, Paterson AJ, Shin R, Kudlow JE (2006) Streptozotocin inhibits O-GlcNAcase via the production of a transition state analog. Biochem Biophys Res Commun 340(2):526–534

    Article  PubMed  CAS  Google Scholar 

  • Torres CR, Hart GW (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 259(5):3308–3317

    PubMed  CAS  Google Scholar 

  • Traxinger RR, Marshall S (1991) Coordinated regulation of glutamine:fructose-6-phosphate amidotransferase activity by insulin, glucose, and glutamine. Role of hexosamine biosynthesis in enzyme regulation. J Biol Chem 266(16):10148–10154

    PubMed  CAS  Google Scholar 

  • Tsujimoto Y (2003) Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 195(2):158–167

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Nakagawa T, Shimizu S (2006) Mitochondrial membrane permeability transition and cell death. Biochim Biophys Acta 1757(9–10):1297–1300

    PubMed  CAS  Google Scholar 

  • Turner JR, Tartakoff AM, Greenspan NS (1990) Cytologic assessment of nuclear and cytoplasmic O-linked N-acetylglucosamine distribution by using anti-streptococcal monoclonal antibodies. Proc Natl Acad Sci U S A 87(15):5608–5612

    Article  PubMed  CAS  Google Scholar 

  • Udeshi ND, Compton PD, Shabanowitz J, Hunt DF, Rose KL (2008) Methods for analyzing peptides and proteins on a chromatographic timescale by electron-transfer dissociation mass spectrometry. Nat Protoc 3(11):1709–1717

    Article  PubMed  CAS  Google Scholar 

  • Udeshi ND, Shabanowitz J, Hunt DF, Rose KL (2007) Analysis of proteins and peptides on a chromatographic timescale by electron-transfer dissociation MS. FEBS J 274(24):6269–6276

    Article  PubMed  CAS  Google Scholar 

  • Vocadlo DJ, Hang HC, Kim EJ, Hanover JA, Bertozzi CR (2003) A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci U S A 100(16):9116–9121

    Article  PubMed  CAS  Google Scholar 

  • Vosseller K, Trinidad JC, Chalkley RJ, Specht CG, Thalhammer A, Lynn AJ, Snedecor JO, Guan S, Medzihradszky KF, Maltby DA, Schoepfer R, Burlingame AL (2006) O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol Cell Proteomics 5(5):923–934

    Article  PubMed  CAS  Google Scholar 

  • Walgren JL, Vincent TS, Schey KL, Buse MG (2003) High glucose and insulin promote O-GlcNAc modification of proteins, including alpha-tubulin. Am J Physiol Endocrinol Metab 284(2):E424–E434

    PubMed  CAS  Google Scholar 

  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412(6844):346–351

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Torii M, Liu H, Hart GW, Hu ZZ (2011) dbOGAP—an integrated bioinformatics resource for protein O-GlcNAcylation. BMC Bioinforma 12:91

    Article  CAS  Google Scholar 

  • Wang Z, Gucek M, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci U S A 105(37):13793–13798

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Pandey A, Hart GW (2007) Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation. Mol Cell Proteomics 6(8):1365–1379

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Udeshi ND, O’Malley M, Shabanowitz J, Hunt DF, Hart GW (2010a) Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol Cell Proteomics 9(1):153–160

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Udeshi ND, Slawson C, Compton PD, Sakabe K, Cheung WD, Shabanowitz J, Hunt DF, Hart GW (2010b) Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci Signal 3(104):ra2

    Article  PubMed  CAS  Google Scholar 

  • Wells L, Gao Y, Mahoney JA, Vosseller K, Chen C, Rosen A, Hart GW (2002a) Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic beta-N-acetylglucosaminidase, O-GlcNAcase. J Biol Chem 277(3):1755–1761

    PubMed  Google Scholar 

  • Wells L, Kreppel LK, Comer FI, Wadzinski BE, Hart GW (2004) O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits. J Biol Chem 279(37):38466–38470

    Article  PubMed  CAS  Google Scholar 

  • Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW (2002b) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 1(10):791–804

    Article  PubMed  CAS  Google Scholar 

  • Whelan SA, Dias WB, Thiruneelakantapillai L, Lane MD, Hart GW (2010) Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-linked beta-N-acetylglucosamine in 3T3-L1 adipocytes. J Biol Chem 285(8):5204–5211

    Article  PubMed  CAS  Google Scholar 

  • Whelan SA, Lane MD, Hart GW (2008) Regulation of the O-linked beta-N-acetylglucosamine transferase by insulin signaling. J Biol Chem 283(31):21411–21417

    Article  PubMed  CAS  Google Scholar 

  • Whitworth GE, Macauley MS, Stubbs KA, Dennis RJ, Taylor EJ, Davies GJ, Greig IR, Vocadlo DJ (2007) Analysis of PUGNAc and NAG-thiazoline as transition state analogues for human O-GlcNAcase: mechanistic and structural insights into inhibitor selectivity and transition state poise. J Am Chem Soc 129(3):635–644

    Article  PubMed  CAS  Google Scholar 

  • Wischmeyer PE, Kahana M, Wolfson R, Ren H, Musch MM, Chang EB (2001) Glutamine reduces cytokine release, organ damage, and mortality in a rat model of endotoxemia. Shock 16(5):398–402

    Article  PubMed  CAS  Google Scholar 

  • Wrabl JO, Grishin NV (2001) Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily. J Mol Biol 314(3):365–374

    Article  PubMed  CAS  Google Scholar 

  • Wu SL, Huhmer AF, Hao Z, Karger BL (2007) On-line LC-MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with post-translational modifications. J Proteome Res 6(11):4230–4244

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Chung KK (2012) Alpha-synuclein impairs normal dynamics of mitochondria in cell and animal models of Parkinson’s disease. J Neurochem 122(3):404–414

    Article  PubMed  CAS  Google Scholar 

  • Xing D, Feng W, Not LG, Miller AP, Zhang Y, Chen YF, Majid-Hassan E, Chatham JC, Oparil S (2008) Increased protein O-GlcNAc modification inhibits inflammatory and neointimal responses to acute endoluminal arterial injury. Am J Physiol Heart Circ Physiol 295(1):H335–H342

    Article  PubMed  CAS  Google Scholar 

  • Xu SL, Chalkley RJ, Wang ZY, Burlingame AL (2012) Identification of O-linked beta-d-N-acetylglucosamine-modified proteins from Arabidopsis. Methods Mol Biol 876:33–45

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Zou LY, Bounelis P, Chaudry I, Chatham JC, Marchase RB (2006a) Glucosamine administration during resuscitation improves organ function after trauma hemorrhage. Shock 25(6):600–607

    Article  PubMed  CAS  Google Scholar 

  • Yang WH, Kim JE, Nam HW, Ju JW, Kim HS, Kim YS, Cho JW (2006b) Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol 8(10):1074–1083

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F, So WV, Kudlow JE, Michell RH, Olefsky JM, Field SJ, Evans RM (2008) Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451(7181):964–969

    Article  PubMed  CAS  Google Scholar 

  • Yang YR, Song M, Lee H, Jeon Y, Choi EJ, Jang HJ, Moon HY, Byun HY, Kim EK, Kim DH, Lee MN, Koh A, Ghim J, Choi JH, Lee-Kwon W, Kim KT, Ryu SH, Suh PG (2012) O-GlcNAcase is essential for embryonic development and maintenance of genomic stability. Aging cell 11(3):439–448

    Article  PubMed  CAS  Google Scholar 

  • Yuzwa SA, Macauley MS, Heinonen JE, Shan X, Dennis RJ, He Y, Whitworth GE, Stubbs KA, McEachern EJ, Davies GJ, Vocadlo DJ (2008) A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol 4(8):483–490

    Article  PubMed  CAS  Google Scholar 

  • Yuzwa SA, Shan X, Macauley MS, Clark T, Skorobogatko Y, Vosseller K, Vocadlo DJ (2012) Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol 8(4):393–399

    Article  PubMed  CAS  Google Scholar 

  • Zachara NE, Cheung WD, Hart GW (2004a) Nucleocytoplasmic glycosylation, O-GlcNAc: identification and site mapping. Methods Mol Biol 284:175–194

    PubMed  CAS  Google Scholar 

  • Zachara NE, Molina H, Wong KY, Pandey A, Hart GW (2011a) The dynamic stress-induced “O-GlcNAc-ome” highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways. Amino Acids 40(3):793–808

    Article  PubMed  CAS  Google Scholar 

  • Zachara NE, O’Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW (2004b) Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem 279(29):30133–30142

    Article  PubMed  CAS  Google Scholar 

  • Zachara NE, Vosseller K, Hart GW (2011b) Detection and analysis of proteins modified by O-linked N-acetylglucosamine. Curr Protoc Mol Biol Chapter 17:Unit 17 16. doi:10.1002/0471142727.mb1706s95

  • Zachara NE, Vosseller K, Hart GW (2011c) Detection and analysis of proteins modified by O-linked N-acetylglucosamine. Curr Protoc Mol Biol Chapter 12:Unit 8. doi:10.1002/0471140864.ps1208s66.

  • Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE (2003) O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115(6):715–725

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Miyamoto S, Brown JH (2004) Cardiomyocyte calcium and calcium/calmodulin-dependent protein kinase II: friends or foes? Recent Prog Horm Res 59:141–168

    Article  PubMed  CAS  Google Scholar 

  • Zou L, Yang S, Champattanachai V, Hu S, Chaudry IH, Marchase RB, Chatham JC (2009) Glucosamine improves cardiac function following trauma-hemorrhage by increased protein O-GlcNAcylation and attenuation of NF-{kappa}B signaling. Am J Physiol Heart Circ Physiol 296(2):H515–H523

    Article  PubMed  CAS  Google Scholar 

  • Zou L, Yang S, Hu S, Chaudry IH, Marchase RB, Chatham JC (2007) The protective effects of PUGNAc on cardiac function after trauma-hemorrhage are mediated via increased protein O-GlcNAc levels. Shock 27(4):402–408

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to our colleagues whose work was not cited in this review due to theme or space restrictions. Natasha E. Zachara, Ph.D., is funded by grants from the American Heart Association (SD0930162N) and the National Heart, Lung, and Blood Institute (R21-HL-108003 and 1P01-HL-107153). Albert Lee, Ph.D., receives funding as a GCF fellow from the National Heart, Lung and Blood Institute PEG Program (P01-HL-107153).

Disclosures

There are no conflicts of interest, financial or otherwise, declared by the authors of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasha E. Zachara.

Additional information

Jennifer A. Groves and Albert Lee contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groves, J.A., Lee, A., Yildirir, G. et al. Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis. Cell Stress and Chaperones 18, 535–558 (2013). https://doi.org/10.1007/s12192-013-0426-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-013-0426-y

Keywords

Navigation