Skip to main content

Advertisement

Log in

Blends of charcoal fines and wood improve the combustibility and quality of the solid biofuels

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The effects of the blends of charcoal fines and Schizolobium parahyba var. amazonicum (paricá) wood on the briquette quality and on the combustibility of this solid biofuel is not fully understood, especially from fast-growing plantations with Amazonian tree species. In addition, this paper presents new information about the occurrence of inorganic elements that may contribute to increase the emission of toxic compounds in the combustion of paricá wood, for example, Cl. Thus, this study evaluated the composition of charcoal and S. parahyba var. amazonicum wood for briquettes, investigating the occurrence of inorganic elements responsible for the toxic organochlorine contaminants. Different formulations between charcoal and S. parahyba var. amazonicum wood were analyzed and later compacted in a laboratory briquetting machine with temperature of 90 °C and pressure of 5 MPa. The chemical and elemental composition of S. parahyba var. amazonicum wood was determined using X-ray fluorescence spectrometry (μ-XRF). The briquettes produced were tested for bulk and energy densities, proximate composition, heating value, equilibrium moisture, and resistance to diametral compression. S. parahyba var. amazonicum wood had chlorine levels below the recommended by international standards for solid biofuel intended for non-industrial use (< 300 mg kg−1). S. parahyba var. amazonicum, despite being a fast-growing species, has ideal chemical characteristics for energy purposes (Cl, S, and ashes). The most suitable briquettes were those produced with 50% of charcoal and 50% of S. parahyba var. amazonicum wood. This solid biofuel showed higher heating value of 22.74 MJ kg−1 and ash content of 2.65% db.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Trubetskaya A, Leahy JJ, Yazhenskikh E, Muller M, Layden P, Johnson R, Stahl K, Monaghan RFD (2019) Characterization of woodstove briquettes from torrefied biomass and coal. Energy 171:853–865. https://doi.org/10.1016/j.energy.2019.01.064

    Article  CAS  Google Scholar 

  2. Liu D, Guo X, Xiao B (2019) What causes growth of global greenhouse gas emissions? Evidence from 40 countries. Sci Total Environ 661:750–766. https://doi.org/10.1016/j.scitotenv.2019.01.197

    Article  CAS  PubMed  Google Scholar 

  3. Ríos-Badrán IM, Luzardo-Ocampo I, García-Trejo JF, Santos-Cruza J, Gutiérrez-Antonio C (2020) Production and characterization of fuel pellets from rice husk and wheat straw. Renew Energy 145:500–507. https://doi.org/10.1016/j.renene.2019.06.048

    Article  CAS  Google Scholar 

  4. Martinez CLM, Rocha EPA, Carneiro ACO, Gomes FJB, Bathala LAR, Vakkilainen E, Cardoso M (2019) Characterization of residual biomasses from the coffee production chain and assessment the potential for energy purposes. Biomass Bioenergy 120:68–76. https://doi.org/10.1016/j.biombioe.2018.11.003

    Article  CAS  Google Scholar 

  5. Olugbade T, Ojo O, Mohammed T (2019) Influence of binders on combustion properties of biomass briquettes: a recent review. Bioenergy Res 12:241–259. https://doi.org/10.1007/s12155-019-09973-w

    Article  CAS  Google Scholar 

  6. Martinez CLM, Sermyagina E, Carneiro ACO, Vakkilainen E, Cardoso M (2019) Production and characterization of coffee-pine wood residue briquettes as alternative fuel for local firing systems in Brazil. Biomass Bioenergy 123:70–77. https://doi.org/10.1016/j.biombioe.2019.02.013

    Article  CAS  Google Scholar 

  7. Arévalo J, Quispe G, Raymundo C (2017) Sustainable energy model for the production of biomass briquettes based on rice husk in low-income agricultural areas in Peru. Energy Procedia 141:138–145. https://doi.org/10.1016/j.egypro.2017.11.026

    Article  Google Scholar 

  8. Olugbade T, Ojo OT (2020) Binderless briquetting technology for lignite briquettes: a review. Energy Ecol Environ. https://doi.org/10.1007/s40974-020-00165-3

  9. EPE (2018) Energy Research Company. National Energy Balance 2018: Final Report. EPE, Brasília

  10. Silva FTM, Ataíde CH (2019) Valorization of Eucalyptus urograndis wood via carbonization: product yields and characterization. Energy 172:509–516. https://doi.org/10.1016/j.energy.2019.01.159

    Article  CAS  Google Scholar 

  11. Razuan R, Finney KN, Chen Q, Sharifi VN, Swithenbank J (2011) Pelletised fuel production from palm kernel cake. Fuel Process Technol 92:609–615. https://doi.org/10.1016/j.fuproc.2010.11.018

    Article  CAS  Google Scholar 

  12. Gendek A, Aniszewska M, Malaták J, Velebil J (2018) Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass Bioenergy 117:173–179. https://doi.org/10.1016/j.biombioe.2018.07.025

    Article  Google Scholar 

  13. Sette Júnior CR, Hansted ALS, Novaes E, Lima PAF, Rodrigues AC, Santos DR, Yamaji FM (2018) Energy enhancement of the eucalyptus bark by briquette production. Ind Crop Prod 122:209–2013. https://doi.org/10.1016/j.indcrop.2018.05.057

    Article  Google Scholar 

  14. Vidaurre GB, Carneiro ACO, Vital BR, Santos RC, Valle MLA (2012) Energetic properties of paricá wood and charcoal (Schizolobium amazonicum). J Brazilian For Sci 36:365–371. https://doi.org/10.1590/S0100-67622012000200018

    Article  Google Scholar 

  15. Vidaurre GB, Vital BR, Oliveira AC, Oliveira JTS, Moulin JC, Silva JGM, Soranso DR (2018) Physical and mechanical properties of juvenile Shizolobium amazonicum wood. J Brazilian For Sci 42. https://doi.org/10.1590/1806-90882018000100001

  16. Silva CR, Santos Júnior JA, Araújo AJC, Sales A, Siviero MA, Andrade FWC, Castro JP, Latorraca JVF, Melo LEL (2019) Properties of juvenile wood of Schizolobium parahyba var. amazonicum (paricá) under different cropping systems. Agrofor Systems 94:583–595. https://doi.org/10.1007/s10457-019-00422-3

    Article  Google Scholar 

  17. Silva AR, Sales A (2018) Growth and production of paricá at different ages and cultivation systems. Adv For Sci 5:231–235. https://doi.org/10.34062/afs.v5i1.5182

    Article  Google Scholar 

  18. Sette Júnior CR, Cunha TQG, Coneglian A, Hansted ALS, Silva DA, Lima PAF, Silva MF, Yamaji FM (2020) Does the presence of bark in the wood of fast-growing forest species significantly change the energy potential. Bioenergy Res 13:222–228. https://doi.org/10.1007/s12155-020-10115-w

    Article  Google Scholar 

  19. Mello WZ (2001) Precipitation chemistry in the coast of the Metropolitan Region of Rio de Janeiro, Brazil. Environ Pollut 114:235–242

    Article  Google Scholar 

  20. DIN (2011) Deutches Institut Für Normung. EN 14961-3: Solid biofuels – Fuel specifications and classes –Part 3: Wood briquettes for non-industrial use

  21. Keipi T, Tolvanen H, Kokko L, Raiko R (2014) The effect of torrefaction on the chlorine content and heating value of eight woody biomass samples. Biomass Bioenergy 66:232–239. https://doi.org/10.1016/j.biombioe.2014.02.015

    Article  CAS  Google Scholar 

  22. ISO (2015) International Organization for Standardization. ISO 18122: specifies a method for the determination of ash content of all solid biofuels. ISO, Geneva

  23. Freitas AJ, Leal CS, Costa ACS, Pereira BLC, Rocha MFV, Oliveira AC, Carneiro ACO (2016) Effect of pressure and compression time in properties of paricá wood waste briquettes. Native 4:380–385. https://doi.org/10.14583/2318-7670.v04n06a06

    Article  Google Scholar 

  24. TAPPI (2016) Technical Association of the Pulp and Paper Industry. TAPPI T 222 om-02: acid-insoluble lignin in wood and pulp. TAPPI, Atlanta

  25. TAPPI (2007) Technical Association of the Pulp and Paper Industry. TAPPI T 204 cm-97: Solvent extractives of wood and pulp. TAPPI, Atlanta

  26. ASTM (2007) American Society for Testing Materials. ASTM D1762- 84: Standard test method for chemical analysis of wood charcoal. ASTM International, Philadelphia

  27. DIN (2000) Deutsches Institut Für Normung. EN 51900-1: Testing of solid and liquid fuels – Determination of the gross calorific value by the bomb calorimeter and calculation of net calorific value - Part 1. Principles, apparatus, methods. German Institute for Standardization, Berlin

    Google Scholar 

  28. DIN (2010) Deutsches Institut Für Normung. EN 14918: Determination of calorific value. German Institute for Standardization, Berlin

  29. Furtado TS, Valin M, Brand MA, Bellote AFJ (2010) Variables of the briquetting process and quality of forest biomass briquettes. Brazilian J For Res 30:101–106. https://doi.org/10.4336/2010.pfb.30.62.101

    Article  Google Scholar 

  30. Menucelli JR, Amorim EP, Freitas MLM, Zanata M, Cambuim J, Moraes MLT, Yamaji FM, Silva Júnior FG, Longui EL (2019) Potential of Hevea brasiliensis clones, Eucalyptus pellita and Eucalyptus tereticornis wood as raw materials for bioenergy based on higher heating value. Bioenergy Res 12:992–999. https://doi.org/10.1007/s12155-019-10041-6

    Article  CAS  Google Scholar 

  31. Protásio TP, Scatolino MV, Araújo ACC, Oliveira AFCF, Figueiredo ICR, Assis MR, Trugilho PF (2019) Assessing proximate composition, extractive concentration, and lignin quality to determine appropriate parameters for selection of superior eucalyptus firewood. Bioenergy Res 12:626–641. https://doi.org/10.1007/s12155-019-10004-x

    Article  CAS  Google Scholar 

  32. Tumutegyreize P, Mugenyi R, Ketlogetswe J, Gandure J (2016) A comparative performance analysis of carbonized briquettes and charcoal fuels in Kampala-urban, Uganda. Energy Sust Dev 31:91–96. https://doi.org/10.1016/j.esd.2016.01.001

    Article  Google Scholar 

  33. Zhang J, Zheng D, Wu K, Zhang X (2019) The optimum conditions for preparing briquette made from millet bran using generalized distance function. Renew Energy 140:692–703. https://doi.org/10.1016/j.renene.2019.03.079

    Article  Google Scholar 

  34. Deboni TL, Simioni FJ, Brand MA, Costa VJ (2019) Models for estimating the price of forest biomass used as energy source: a Brazilian case. Energy Pol 127:382–391. https://doi.org/10.1016/j.enpol.2018.12.021

    Article  Google Scholar 

  35. Dias Júnior AF, Andrade AM, Costa Júnior DS (2014) Characterization of briquettes produced with agroforestry residues. Brazilian J For Res 34:225–234. https://doi.org/10.4336/2014.pfb.34.79.613

    Article  Google Scholar 

  36. Mwampamba TH, Owen M, Pigaht M (2013) Opportunities, challenges and way forward for the charcoal briquette industry in Sub-Saharan Africa. Energy Sust Dev 17:158–170. https://doi.org/10.1016/j.esd.2012.10.006

    Article  Google Scholar 

  37. Vassilev SV, Baxter D, Vassileva CG (2014) An overview of the behaviour of biomass during combustion: part ii. Ash fusion and ash formation mechanisms of biomass types: Part II. Ash fusion and ash formation mechanisms of biomass types. Fuel 117:152–183. https://doi.org/10.1016/j.fuel.2013.09.024

    Article  CAS  Google Scholar 

  38. Vassilev SV, Vassileva CG (2016) Composition, properties and challenges of algae biomass for biofuel application: an overview. Fuel 181:1–33. https://doi.org/10.1016/j.fuel.2016.04.106

    Article  CAS  Google Scholar 

  39. Vassilev SV, Vassileva CG, Song Y, Li WY, Feng J (2017) Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel 208:377–409. https://doi.org/10.1016/j.fuel.2017.07.036

    Article  CAS  Google Scholar 

  40. Strandberg A, Thyrel M, Skoglund N, Lestander TA, Brostom M, Backman R (2018) Biomass pellet combustion: cavities and ash formation characterized by synchrontron X-ray micro-tomography. Fuel Process Technol 176:211–220. https://doi.org/10.1016/j.fuproc.2018.03.023

    Article  CAS  Google Scholar 

  41. EN (2005) European Normalization. EN 1860-2: appliances, solid fuels and firelighters for barbecuing. Part 2: barbecue charcoal and barbecue charcoal briquettes - Requirements and test methods. European Standards

  42. Yin CY (2011) Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90:1128–1132. https://doi.org/10.1016/j.fuel.2010.11.031

    Article  CAS  Google Scholar 

  43. Reis AA, Protásio TP, Melo ICAN, Trugilho PF, Carneiro ACO (2012) Wood composition and charcoal of Eucalyptus urophylla in different planting locations. Brazilian J For Res 32:277–290. https://doi.org/10.4336/2012.pfb.32.71.277

    Article  Google Scholar 

  44. Telmo C, Lousada J (2011) The explained variation by lignin and extractive contents on higher heating value of wood. Biomass Bioenergy 35:1663–1667. https://doi.org/10.1016/j.biombioe.2010.12.038

    Article  CAS  Google Scholar 

  45. ISO (2014) International Organization for Standardization. ISO 17225-4: solid biofuels — fuel specifications and classes — Part 4: graded wood chips. ISO, Geneva

  46. Huron M, Oukala S, Lardière J, Giraud N, Dupont C (2017) An extensive characterization of various treated waste wood for assessment of suitability with combustion process. Fuel 202:118–128. https://doi.org/10.1016/j.fuel.2017.04.025

    Article  CAS  Google Scholar 

  47. Escobar JFA (2016) Sustainable wood production for energy in Brazil: the case of wood pellets. Thesis, University of São Paulo

  48. Fuller A, Omidiji Y, Viefhaus T, Maier J, Schefknecht G (2019) The impact of an additive on fly ash formation/transformation from wood dust combustion in a lab-scale pulverized fuel reactor. Renew Energy 136:732–745. https://doi.org/10.1016/j.renene.2019.01.013

    Article  CAS  Google Scholar 

  49. Dias Júnior AF, Andrade AM, Carvalho AM, Benício EL, Brito JO (2016) Production briquettes from the fines of charcoal and lignocellulosic residues for bioenergetics use. Sci For 44:453–462. https://doi.org/10.18671/scifor.v44n110.18

    Article  Google Scholar 

  50. Silva DA, Yamaji FM, Barros JL, Róz AL, Nakashima GT (2015) Characterization of biomass for briquetting. Forest 45:713–722. https://doi.org/10.5380/rf.v45i4.39700

    Article  Google Scholar 

  51. Wu S, Zhang S, Wang C, Mu C, Huang X (2018) High-strength charcoal briquette preparation from hydrothermal pretreated biomass wastes. Fuel Process Technol 171:293–300

    Article  CAS  Google Scholar 

  52. Food and Agriculture Organization of the United Nations – FAO (1990) Energy conservation in the mechanical forest industries. FAO Forest Paper 93. http://www.fao.org/docrep/t0269e/t0269e/t0269e08.htm. Accessed 21 July 2020

  53. Iwakiri S, Albuquerque CEC, Prata JG, Costa ACB (2008) Utilization of wood of eucalyptus grandis and Eucalyptus dunnii for oriented strand board – OSB manufacturing. Ciência Florest 18:265–270. https://doi.org/10.5902/19805098463

    Article  Google Scholar 

  54. Dias Júnior AF, Brito JO, Andrade CR (2015) Granulometric influence on the combustion of charcoal for barbecue. J Brazilian For Sci 39:1127–1133. https://doi.org/10.1590/0100-67622015000600016

    Article  Google Scholar 

  55. Olugbade TO, Ojo OT (2020) Biomass torrefaction for the production of high-grade solid biofuels: a review. Bioenerg Res. https://doi.org/10.1007/s12155-020-10138-3

Download references

Acknowledgments

We would like to thank the reviewers and editor, whose suggestions have made this research scientifically fit.

Funding

This project is funded by the Coordination for the Improvement of Higher Education (CAPES/Brazil–financing code 001), National Council for Scientific and Technological Development (CNPq/Brazil), and the Wood Quality Research Center (NUQMAD/UFES).

Author information

Authors and Affiliations

Authors

Contributions

Ananias Francisco Dias Júnior: conceptualization, methodology, roles/writing–original draft; Mariana Aya Suuchi, Analder Sant’Anna Neto, João Gabriel Missia da Silva, Álison Moreira da Silva, Natália Dias de Souza: investigation and writing–review and editing; Thiago de Paula Protásio: conceptualization, formal analysis, and writing–review and editing; José Otávio Brito: supervision, resources, funding acquisition, and project administration. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Álison Moreira da Silva.

Ethics declarations

Conflict of Interest/Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias Júnior, A.F., Suuchi, M.A., Sant’Anna Neto, A. et al. Blends of charcoal fines and wood improve the combustibility and quality of the solid biofuels. Bioenerg. Res. 14, 344–354 (2021). https://doi.org/10.1007/s12155-020-10179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10179-8

Keywords

Navigation