Skip to main content

Advertisement

Log in

Novel functional magnetic resonance imaging biomarkers for assessing response to therapy in hepatocellular carcinoma

  • Educational Series – Red Series
  • New Trends in Clinical Oncology
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The established and adapted image biomarkers based on size for tumor burden measurement continue to be applied to hepatocellular carcinoma (HCC) as size measurement can easily be used in clinical practice. However, in the setting of novel targeted therapies and liver directed treatments, simple tumor anatomical changes can be less informative and usually appear later than biological changes. Functional magnetic resonance imaging (MRI) has a potential to be a promising technique for assessment of HCC response to therapy. In this review, we discuss various functional MRI biomarkers that play an increasingly important role in evaluation of HCC response after treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  3. Alsina AE. Liver transplantation for hepatocellular carcinoma. Cancer Control. 2010;17:83–6.

    PubMed  Google Scholar 

  4. Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47:207–14.

    Article  CAS  PubMed  Google Scholar 

  5. Rosen MA. Use of modified RECIST criteria to improve response assessment in targeted therapies: challenges and opportunities. Cancer Biol Ther. 2010;9:20–2.

    Article  PubMed  Google Scholar 

  6. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  CAS  PubMed  Google Scholar 

  7. Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European association for the study of the liver. J Hepatol. 2001;35:421–30.

    Article  CAS  PubMed  Google Scholar 

  8. Iwazawa J, Ohue S, Hashimoto N, Yasumasa K, Abe H, Mitani T. Bevacizumab-induced hypovascular hepatocellular carcinoma treated by transarterial chemoembolization in a patient with metastatic colon cancer. J Vasc Interv Radiol. 2010;21:412–4.

    Article  PubMed  Google Scholar 

  9. Kudo M. Imaging blood flow characteristics of hepatocellular carcinoma. Oncology. 2002;62:48–56.

    Article  PubMed  Google Scholar 

  10. Pandharipande PV, Krinsky GA, Rusinek H, Lee VS. Perfusion imaging of the liver: current challenges and future goals. Radiology. 2005;234:661–73.

    Article  PubMed  Google Scholar 

  11. Rao SX, Chen CZ, Liu H, Zeng MS, Qu XD. Three-dimensional whole-liver perfusion magnetic resonance imaging in patients with hepatocellular carcinomas and colorectal hepatic metastases. BMC Gastroenterol. 2013;13:53.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Hagiwara M, Rusinek H, Lee VS, Losada M, Bannan MA, Krinsky GA, et al. Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging—initial experience. Radiology. 2008;246:926–34.

    Article  PubMed  Google Scholar 

  13. Morgan B, Thomas AL, Drevs J, Hennig J, Buchert M, Jivan A, Horsfield MA, et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol. 2003;21:3955–64.

    Article  CAS  PubMed  Google Scholar 

  14. Wang J, Chen LT, Tsang YM, Liu TW, Shih TT. Dynamic contrast-enhanced MRI analysis of perfusion changes in advanced hepatocellular carcinoma treated with an antiangiogenic agent: a preliminary study. AJR Am J Roentgenol. 2004;183:713–9.

    Article  PubMed  Google Scholar 

  15. Miyazaki K, Collins DJ, Walker-Samuel S, Taylor JN, Padhani AR, Leach MO, et al. Quantitative mapping of hepatic perfusion index using MR imaging: a potential reproducible tool for assessing tumour response to treatment with the antiangiogenic compound BIBF 1120, a potent triple angiokinase inhibitor. Eur Radiol. 2008;18:1414–21.

    Article  PubMed  Google Scholar 

  16. Totman JJ, O’Gorman RL, Kane PA, Karani JB. Comparison of the hepatic perfusion index measured with gadolinium-enhanced volumetric MRI in controls and in patients with colorectal cancer. Br J Radiol. 2005;78:105–9.

    Article  CAS  PubMed  Google Scholar 

  17. Wang D, Bangash AK, Rhee TK, Woloschak GE, Paunesku T, Salem R, et al. Liver tumors: monitoring embolization in rabbits with VX2 tumors—transcatheter intraarterial first-pass perfusion MR imaging. Radiology. 2007;245:130–9.

    Article  PubMed  Google Scholar 

  18. Larson AC, Wang D, Atassi B, Sato KT, Ryu RK, Lewandowski RJ, et al. Transcatheter intraarterial perfusion: MR monitoring of chemoembolization for hepatocellular carcinoma—feasibility of initial clinical translation. Radiology. 2008;246:964–71.

    Article  PubMed  Google Scholar 

  19. Gaba RC, Wang D, Lewandowski RJ, Ryu RK, Sato KT, Kulik LM, et al. Four-dimensional transcatheter intraarterial perfusion MR imaging for monitoring chemoembolization of hepatocellular carcinoma: preliminary results. J Vasc Interv Radiol. 2008;19:1589–95.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Katada Y, Shukuya T, Kawashima M, Nozaki M, Imai H, Natori T, et al. A comparative study between arterial spin labeling and CT perfusion methods on hepatic portal venous flow. Jpn J Radiol. 2012;30:863–9.

    Article  PubMed  Google Scholar 

  21. Weinreb JC. Which study when? Is gadolinium-enhanced MR imaging safer than iodine-enhanced CT? Radiology. 2008;249:3–8.

    Article  PubMed  Google Scholar 

  22. Sahani DV, Holalkere NS, Mueller PR, Zhu AX. Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue—initial experience. Radiology. 2007;243:736–43.

    Article  PubMed  Google Scholar 

  23. Taouli B, Ehman RL, Reeder SB. Advanced MRI methods for assessment of chronic liver disease. AJR Am J Roentgenol. 2009;193:14–27.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Zech CJ, Reiser MF, Herrmann KA. Imaging of hepatocellular carcinoma by computed tomography and magnetic resonance imaging: state of the art. Dig Dis. 2009;27:114–24.

    Article  PubMed  Google Scholar 

  25. Kamel IR, Liapi E, Reyes DK, Zahurak M, Bluemke DA, Geschwind JF. Unresectable hepatocellular carcinoma: serial early vascular and cellular changes after transarterial chemoembolization as detected with MR imaging. Radiology. 2009;250:466–73.

    Article  PubMed  Google Scholar 

  26. Goshima S, Kanematsu M, Kondo H, Yokoyama R, Tsuge Y, Shiratori Y, et al. Evaluating local hepatocellular carcinoma recurrence post-transcatheter arterial chemoembolization: is diffusion-weighted MRI reliable as an indicator? J Magn Reson Imaging. 2008;27:834–9.

    Article  PubMed  Google Scholar 

  27. Kamel IR, Bluemke DA, Eng J, Liapi E, Messersmith W, Reyes DK, et al. The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma. J Vasc Interv Radiol. 2006;17:505–12.

    Article  PubMed  Google Scholar 

  28. Rhee TK, Naik NK, Deng J, Atassi B, Mulcahy MF, Kulik LM, et al. Tumor response after yttrium-90 radioembolization for hepatocellular carcinoma: comparison of diffusion-weighted functional MR imaging with anatomic MR imaging. J Vasc Interv Radiol. 2008;19:1180–6.

    Article  PubMed  Google Scholar 

  29. Schraml C, Schwenzer NF, Martirosian P, Bitzer M, Lauer U, Claussen CD, et al. Diffusion-weighted MRI of advanced hepatocellular carcinoma during sorafenib treatment: initial results. AJR Am J Roentgenol. 2009;193:W301–7.

    Article  PubMed  Google Scholar 

  30. Yuan Z, Ye XD, Dong S, Xu LC, Xu XY, Liu SY, et al. Role of magnetic resonance diffusion-weighted imaging in evaluating response after chemoembolization of hepatocellular carcinoma. Eur J Radiol. 2010;75:e9–14.

    Article  PubMed  Google Scholar 

  31. Kubota K, Yamanishi T, Itoh S, Murata Y, Miyatake K, Yasunami H, et al. Role of diffusion-weighted imaging in evaluating therapeutic efficacy after transcatheter arterial chemoembolization for hepatocellular carcinoma. Oncol Rep. 2010;24:727–32.

    Article  PubMed  Google Scholar 

  32. Mannelli L, Kim S, Hajdu CH, Babb JS, Taouli B. Serial diffusion-weighted MRI in patients with hepatocellular carcinoma: prediction and assessment of response to transarterial chemoembolization preliminary experience. Eur J Radiol. 2013;82:577–82.

    Article  PubMed  Google Scholar 

  33. Yuan Z, Li WT, Peng WJ. Pre-treatment apparent diffusion coefficient is imaging biomarker for prediction of response to chemoembolization in hepatocellular carcinoma. Eur J Radiol. doi:10.1016/j.ejrad.2013.08.009.

  34. Dong S, Ye XD, Yuan Z, Xu LC, Xiao XS. Relationship of apparent diffusion coefficient to survival for patients with unresectable primary hepatocellular carcinoma after chemoembolization. Eur J Radiol. 2012;81:472–7.

    Article  PubMed  Google Scholar 

  35. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11:102–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Bonekamp S, Jolepalem P, Lazo M, Gulsun MA, Kiraly AP, Kamel IR. Hepatocellular carcinoma: response to TACE assessed with semiautomated volumetric and functional analysis of diffusion-weighted and contrast-enhanced MR imaging data. Radiology. 2011;260(3):752–61.

    Article  PubMed  Google Scholar 

  37. Bonekamp S, Li Z, Geschwind JF, Halappa VG, Corona-Villalobos CP, Reyes D, et al. Unresectable hepatocellular carcinoma: MR imaging after intraarterial therapy. Part I. Identification and validation of volumetric functional response criteria. Radiology. 2013;268(2):420–30.

    Article  PubMed  Google Scholar 

  38. Bonekamp S, Halappa VG, Geschwind JF, Li Z, Corona-Villalobos CP, Reyes D, et al. Unresectable hepatocellular carcinoma: MR imaging after intraarterial therapy. Part II. Response stratification using volumetric functional criteria after intraarterial therapy. Radiology. 2013;268(2):431–9.

    Google Scholar 

  39. Murphy M, Loosemore A, Clifton AG, Howe FA, Tate AR, Cudlip SA, et al. The contribution of proton magnetic resonance spectroscopy (1HMRS) to clinical brain tumour diagnosis. Br J Neurosurg. 2002;16:329–34.

    Article  CAS  PubMed  Google Scholar 

  40. Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology. 2002;222:715–21.

    Article  PubMed  Google Scholar 

  41. Möller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U, et al. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology. 2002;44:371–81.

    Article  PubMed  Google Scholar 

  42. Scheidler J, Hricak H, Vigneron DB, Yu KK, Sokolov DL, Huang LR, et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging—clinicopathologic study. Radiology. 1999;213:473–80.

    Article  CAS  PubMed  Google Scholar 

  43. Bolan PJ, DelaBarre L, Baker EH, Merkle H, Everson LI, Yee D, et al. Eliminating spurious lipid sidebands in 1H MRS of breast lesions. Magn Reson Med. 2002;48:215–22.

    Article  PubMed  Google Scholar 

  44. Yeung DK, Cheung HS, Tse GM. Human breast lesions: characterization with contrast-enhanced in vivo proton MR spectroscopy—initial results. Radiology. 2001;220:40–6.

    Article  CAS  PubMed  Google Scholar 

  45. Allen JR, Prost RW, Griffith OW, Erickson SJ, Erickson BA. In vivo proton (H1) magnetic resonance spectroscopy for cervical carcinoma. Am J Clin Oncol. 2001;24:522–9.

    Article  CAS  PubMed  Google Scholar 

  46. Chen CY, Li CW, Kuo YT, Jaw TS, Wu DK, Jao JC, et al. Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization: choline levels and MR diffusion constants—initial experience. Radiology. 2006;239:448–56.

    Article  PubMed  Google Scholar 

  47. Griffiths JR, Tate AR, Howe FA, Stubbs M, Group on MRS Application to Cancer. Magnetic resonance spectroscopy of cancer—practicalities of multi-centre trials and early results in non-Hodgkin’s lymphoma. Eur J Cancer. 2002;38:2085–93.

    Article  CAS  PubMed  Google Scholar 

  48. Ross B, Marshall V, Smith M, Bartlett S, Freeman D. Monitoring response to chemotherapy of intact human tumours by 31P nuclear magnetic resonance. Lancet. 1984;1:641–6.

    Article  CAS  PubMed  Google Scholar 

  49. Bizzi A, Movsas B, Tedeschi G, Phillips CL, Okunieff P, Alger JR, et al. Response of non-Hodgkin lymphoma to radiation therapy: early and long-term assessment with H-1 MR spectroscopic imaging. Radiology. 1995;194:271–6.

    CAS  PubMed  Google Scholar 

  50. Kurhanewicz J, Vigneron DB, Hricak H, Parivar F, Nelson SJ, Shinohara K, et al. Prostate cancer: metabolic response to cryosurgery as detected with 3D H-1 MR spectroscopic imaging. Radiology. 1996;200:489–96.

    CAS  PubMed  Google Scholar 

  51. Schwarz AJ, Maisey NR, Collins DJ, Cunningham D, Huddart R, Leach MO. Early in vivo detection of metabolic response: a pilot study of 1H MR spectroscopy in extracranial lymphoma and germ cell tumours. Br J Radiol. 2002;75:959–66.

    CAS  PubMed  Google Scholar 

  52. Longo R, Ricci C, Masutti F, Vidimari R, Crocé LS, Bercich L, et al. Fatty infiltration of the liver. Quantification by 1H localized magnetic resonance spectroscopy and comparison with computed tomography. Invest Radiol. 1993;28:297–302.

    Article  CAS  PubMed  Google Scholar 

  53. Cho SG, Kim MY, Kim HJ, Kim YS, Choi W, Shin SH, et al. Chronic hepatitis: in vivo proton MR spectroscopic evaluation of the liver and correlation with histopathologic findings. Radiology. 2001;221:740–6.

    Article  CAS  PubMed  Google Scholar 

  54. Lim AK, Patel N, Hamilton G, Hajnal JV, Goldin RD, Taylor-Robinson SD. The relationship of in vivo 31P MR spectroscopy to histology in chronic hepatitis C. Hepatology. 2003;37:788–94.

    Article  CAS  PubMed  Google Scholar 

  55. Menon DK, Sargentoni J, Taylor-Robinson SD, Bell JD, Cox IJ, Bryant DJ, et al. Effect of functional grade and etiology on in vivo hepatic phosphorus-31 magnetic resonance spectroscopy in cirrhosis: biochemical basis of spectral appearances. Hepatology. 1995;21:417–27.

    CAS  PubMed  Google Scholar 

  56. Taylor-Robinson SD, Sargentoni J, Bell JD, Saeed N, Changani KK, Davidson BR, et al. In vivo and in vitro hepatic 31P magnetic resonance spectroscopy and electron microscopy of the cirrhotic liver. Liver. 1997;17:198–209.

    Article  CAS  PubMed  Google Scholar 

  57. Lim AK, Patel N, Gedroyc WM, Blomley MJ, Hamilton G, Taylor-Robinson SD. Hepatocellular adenoma: diagnostic difficulties and novel imaging techniques. Br J Radiol. 2002;75:695–9.

    CAS  PubMed  Google Scholar 

  58. Dixon RM. NMR studies of phospholipid metabolism in hepatic lymphoma. NMR Biomed. 1998;11:370–9.

    Article  CAS  PubMed  Google Scholar 

  59. Bell JD, Bhakoo KK. Metabolic changes underlying 31P MR spectral alterations in human hepatic tumours. NMR Biomed. 1998;11:354–9.

    Article  CAS  PubMed  Google Scholar 

  60. Schilling A, Gewiese B, Berger G, Boese-Landgraf J, Fobbe F, Stiller D, et al. Liver tumors: follow-up with P-31 MR spectroscopy after local chemotherapy and chemoembolization. Radiology. 1992;182:887–90.

    CAS  PubMed  Google Scholar 

  61. Kuo YT, Li CW, Chen CY, Jao J, Wu DK, Liu GC. In vivo proton magnetic resonance spectroscopy of large focal hepatic lesions and metabolite change of hepatocellular carcinoma before and after transcatheter arterial chemoembolization using 3.0-T MR scanner. J Magn Reson Imaging. 2004;19:598–604.

    Article  PubMed  Google Scholar 

  62. Wu B, Peng WJ, Wang PJ, Gu YJ, Li WT, Zhou LP, et al. In vivo 1H magnetic resonance spectroscopy in evaluation of hepatocellular carcinoma and its early response to transcatheter arterial chemoembolization. Chin Med Sci J. 2006;21:258–64.

    PubMed  Google Scholar 

  63. Bian DJ, Xiao EH, Hu DX, Chen XY, Situ WJ, Yuan SW, et al. Magnetic resonance spectroscopy on hepatocellular carcinoma after transcatheter arterial chemoembolization. Chin J Cancer. 2010;29:198–201.

    Article  PubMed  Google Scholar 

  64. Soper R, Himmelreich U, Painter D, Somorjai RL, Lean CL, Dolenko B, et al. Pathology of hepatocellular carcinoma and its precursors using proton magnetic resonance spectroscopy and a statistical classification strategy. Pathology. 2002;34:417–22.

    Article  PubMed  Google Scholar 

  65. Mahmood U, Alfieri AA, Ballon D, Traganos F, Koutcher JA. In vitro and in vivo 31P nuclear magnetic resonance measurements of metabolic changes post radiation. Cancer Res. 1995;55:1248–54.

    CAS  PubMed  Google Scholar 

  66. Murata O, Sakurai H, Mitsuhashi N, Hasegawa M, Yamakawa M, Kurosaki H, et al. 31P NMR spectroscopy can predict the optimum interval between fractionated irradiation doses. Anticancer Res. 1998;18:4297–301.

    CAS  PubMed  Google Scholar 

  67. Li SJ, Jin GY, Fish BL, Moulder JE. Correlation of radiobiological assays of hypoxic fraction with phosphorus-31 magnetic resonance spectroscopy across multiple tumor lines. Radiat Res. 1995;143:45–53.

    Article  CAS  PubMed  Google Scholar 

  68. Meyerhoff DJ, Karczmar GS, Valone F, Venook A, Matson GB, Weiner MW. Hepatic cancers and their response to chemoembolization therapy: quantitative image-guided 31P magnetic resonance spectroscopy. Invest Radiol. 1992;27:456–64.

    Article  CAS  PubMed  Google Scholar 

  69. Yuan Z, Ye XD, Dong S, Xu LC, Xiao XS. Evaluation of early imaging response after chemoembolization of hepatocellular carcinoma by phosphorus-31 magnetic resonance spectroscopy—initial experience. J Vasc Interv Radiol. 2011;22:1166–73.

    Article  PubMed  Google Scholar 

  70. Chmelík M, Schmid AI, Gruber S, Szendroedi J, Krssák M, Trattnig S, et al. Three-dimensional high-resolution magnetic resonance spectroscopic imaging for absolute quantification of 31p metabolites in human liver. Magn Reson Med. 2008;60:796–802.

    Article  PubMed  Google Scholar 

  71. Tosner Z, Dezortova M, Tintera J, Hájek M. Application of two-dimensional CSI for absolute quantification of phosphorus metabolites in the human liver. MAGMA. 2001;13:40–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Science Technology Commission of Shanghai Municipality (0952nm03400, 11nm0504000 and 124119a0100) and National Natural Science Foundation of China (81301218 and 81301262).

Conflict of interest

The authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Yuan, X.-D. Ye or W.-J. Peng.

Additional information

Z. Yuan and W.-T. Li contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Z., Li, WT., Ye, XD. et al. Novel functional magnetic resonance imaging biomarkers for assessing response to therapy in hepatocellular carcinoma. Clin Transl Oncol 16, 599–605 (2014). https://doi.org/10.1007/s12094-013-1147-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-013-1147-5

Keywords

Navigation