Skip to main content
Log in

Clinical safety of induced CTL infusion through recombinant adeno-associated virus-transfected dendritic cell vaccination in Chinese cancer patients

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Aim

The aim of the study is to explore the safety of cytotoxic T lymphocytes (CTLs) infusion by transfected dendritic cells (DCs) with recombinant adeno-associated virus vector (rAAV) carrying CEA cDNA among advanced cancer patients.

Patients and Methods

A total of 27 cancer patients with tumor tissue expression positivity and/or sera-elevated level of CEA were subsequently divided into cohort A and B resulted from the ex vivo expansion number of CTLs generated from co-culture of specific transfected DCs with autologous T lymphocytes. Based on the variations of infused number of specific CTL derived from different yields of individualized patients who had experienced various anti-cancer treatments, we compared the patients of low number of CTL cells (2–8 × 108 infused, cohort A, 6 cases) with those of higher number (above 8 × 108 infused, cohort B, 21 cases) to testify the possible adverse reactions caused by amount of infused CTLs. This study resembled a phase I study aiming for setting up clinical trial of adoptive cellular therapy that conceptually comes from conventional cytotoxic drugs.

Results

The results showed that one case from the each cohort had experienced moderate fever, and four cases with fatigue were seen in cohort B. The symptoms were transient without serious adverse events. For the consideration of clinical response 2 partial remission (8.0 %, 2/25), 1 minor remission, and 9 stable disease (40 %, 10/25) were observed in 25 patients eligible for evaluation. Sera levels of CEA assay were lowered in six patients. During a median follow-up of 8.1 months, we could not observe severe or chronic adverse reactions related to rAAV-DC infusions. Meanwhile, the variation of number of CTLs infused in this setting did not alter the status of peripheral lymphocyte population.

Conclusions

These preliminary data suggest that the rAAV-DC immunotherapy is well-tolerated and showed no severe adverse reactions in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dougan M, Dranoff G (2009) Immune therapy for cancer. Annu Rev Immunol 27:83–117

    Article  PubMed  CAS  Google Scholar 

  2. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308

    Article  PubMed  CAS  Google Scholar 

  3. Aruga A, Yamauchi K, Takasaki K, Furukawa T, Hanyu F (1991) Induction of autologous tumor-specific cytotoxic T cells in patients with liver cancer. Characterizations and clinical utilization. Int J Cancer 49(1):19–24

    Article  PubMed  CAS  Google Scholar 

  4. Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, Shimada K, Sakamoto M, Hirohashi S, Ohashi Y, Kakizoe T (2000) Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 356(9232):807–820

    Article  Google Scholar 

  5. Melief CJ (2008) Cancer immunotherapy by dendritic cells. Immunity 29(3):372–383

    Article  PubMed  CAS  Google Scholar 

  6. Aarntzen EH, Figdor CG, Adema GJ, Punt CJ, de Vries IJ (2008) Dendritic cell vaccination and immune monitoring. Cancer Immunol Immunother 57(10):1559–1568

    Article  PubMed  CAS  Google Scholar 

  7. Decker WK, Xing D, Shpall EJ (2006) Dendritic cell immunotherapy for the treatment of neoplastic disease. Biol Blood Marrow Transpl 12(2):113–125

    Article  Google Scholar 

  8. Tuyaerts S, Aerts JL, Corthals J, Neyns B, Heirman C, Breckpot K, Thielemans K, Bonehill A (2007) Current approaches in dendritic cell generation implications for cancer immunotherapy. Cancer Immunol Immunother 56(10):1513–1537

    Article  PubMed  CAS  Google Scholar 

  9. Schuler-Thurner B, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P, Bender A, Feuerstein B, Fritsch PO, Romani N, Schuler G (2002) Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 195(10):1279–1288

    Article  PubMed  CAS  Google Scholar 

  10. Höltl L, Zelle-Rieser C, Gander H, Papesh C, Ramoner R, Bartsch G, Rogatsch H, Barsoum AL, Coggin JH Jr, Thurnher M (2002) Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res 8(11):3369–3376

    PubMed  Google Scholar 

  11. Fong L, Brockstedt D, Benike C, Breen JK, Strang G, Ruegg CL, Engleman EG (2001) Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J Immunol 167(12):7150–7156

    PubMed  CAS  Google Scholar 

  12. Ladhams A, Schmidt C, Sing G, Butterworth L, Fielding G, Tesar P, Strong R, Leggett B, Powell L, Maddern G, Ellem K, Cooksley G (2002) Treatment of non-resectable hepatocellular carcinoma with autologous tumor-pulsed dendritic cells. J Gastroenterol Hepatol 17(8):889–896

    Article  PubMed  Google Scholar 

  13. Maier T, Tun-Kyi A, Tassis A, Jungius KP, Burg G, Dummer R, Nestle FO (2003) Vaccination of patients with cutaneous T-cell lymphoma using intranodal injection of autologous tumor-lysate-pulsed dendritic cells. Blood 102(7):2338–2344

    Article  PubMed  CAS  Google Scholar 

  14. Zhang L, Zhang H, Liu W, Wang H, Jia J, Si X, Ren J (2005) Specific antihepatocellular carcinoma T cells generated by dendritic cells pulsed with hepatocellular carcinoma cell line HepG2 total RNA. Cell Immunol 238(1):61–66

    Article  PubMed  CAS  Google Scholar 

  15. Zhang HM, Zhang LW, Ren J, Fan L, Si XM, Liu WC (2006) Induction of alpha-fetoprotein-specific CD4- and CD8-mediated T-cell response using RNA-transfected dendritic cells. Cell Immunol 239(2):144–150

    Article  PubMed  CAS  Google Scholar 

  16. Zhang HM, Zhang LW, Liu WC, Cheng J, Si XM, Ren J (2006) Comparative analysis of DC fused with tumor cells or transfected with tumor total RNA as potential cancer vaccines against hepatocellular carcinoma. Cytotherapy 8(6):580–588

    Article  PubMed  CAS  Google Scholar 

  17. Yang JY, Cao DY, Liu WC, Zhang HM, Teng ZH, Ren J (2006) Dendritic cell generated from CD34+ hematopoietic progenitors can be transfected with adenovirus containing gene of HBsAg and induce antigen-specific cytotoxic T cell responses. Cell Immunol 240(1):14–21

    Article  PubMed  CAS  Google Scholar 

  18. Ren J, Jia J, Zhang H, Zhang L, Ma B, Jiang H, Di L, Song G, Yu J (2008) Dendritic cells pulsed with alpha-fetoprotein and mutant P53 fused gene induce bi-targeted cytotoxic T lymphocyte response against hepatic carcinoma. Cancer Sci 99(7):1420–1426

    Article  PubMed  CAS  Google Scholar 

  19. Daya S, Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21(4):583–593

    Article  PubMed  CAS  Google Scholar 

  20. Robert-Guroff M (2007) Replicating and non-replicating viral vectors for vaccine development. Curr Opin Biotechnol 18(6):546–556

    Article  PubMed  CAS  Google Scholar 

  21. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA, Bland RJ, Young D, Strybing K, Eidelberg D, During MJ (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369(9579):2097–2105

    Article  PubMed  CAS  Google Scholar 

  22. Mahadevan M, Liu Y, You C, Luo R, You H, Mehta JL, Hermonat PL (2007) Generation of robust cytotoxic T lymphocytes against prostate specific antigen by transduction of dendritic cells using protein and recombinant adeno-associated virus. Cancer Immunol Immunother 56(10):1615–1624

    Article  PubMed  CAS  Google Scholar 

  23. Chiriva-Internati M, Liu Y, Weidanz JA, Grizzi F, You H, Zhou W, Bumm K, Barlogie B, Mehta JL, Hermonat PL (2003) Testing recombinant adeno-associated virus-gene loading of dendritic cells for generating potent cytotoxic T lymphocytes against a prototype self-antigen, multiple myeloma HM1.24. Blood 102(9):3100–3107

    Article  PubMed  CAS  Google Scholar 

  24. Dudley ME, Rosenberg SA (2007) Adoptive cell transfer therapy. Semin Oncol 34(6):524–531

    Article  PubMed  Google Scholar 

  25. June CH (2007) Adoptive T cell therapy for cancer in the clinic. J Clin Invest 117(6):1466–1476

    Article  PubMed  CAS  Google Scholar 

  26. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  PubMed  CAS  Google Scholar 

  27. Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10(5):475–480

    Article  PubMed  CAS  Google Scholar 

  28. Liao X, Li Y, Bonini C, Nair S, Gilboa E, Greenberg PD, Yee C (2004) Transfection of RNA encoding tumor antigens following maturation of dendritic cells leads to prolonged presentation of antigen and the generation of high-affinity tumor-reactive cytotoxic T lymphocytes. Mol Ther 9(5):757–764

    Article  PubMed  CAS  Google Scholar 

  29. Oh ST, Kim CH, Park MY, Won EH, Sohn HJ, Cho HI, Kang WK, Hong YK, Kim TG (2006) Dendritic cells transduced with recombinant adenoviruses induce more efficient anti-tumor immunity than dendritic cells pulsed with peptide. Vaccine 24(15):2860–2868

    Article  PubMed  CAS  Google Scholar 

  30. Steinman RM (2007) Dendritic cells: understanding immunogenicity. Eur J Immunol 37(Suppl 1):S53–S60

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank technician Song Wei for her assistant of cytometric analysis. This study is founded by Project 2009CB521700 supported by the National Basic Research Program of China (973 Program) and Capital Development Grant 2007-2053 Beijing.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ren.

Additional information

Lijun Di and Yulin Zhu contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di, L., Zhu, Y., Jia, J. et al. Clinical safety of induced CTL infusion through recombinant adeno-associated virus-transfected dendritic cell vaccination in Chinese cancer patients. Clin Transl Oncol 14, 675–681 (2012). https://doi.org/10.1007/s12094-012-0854-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-012-0854-7

Keywords

Navigation