Skip to main content

Advertisement

Log in

Mineralogy and geochemistry of granitoids from Kinnaur region, Himachal Higher Himalaya, India: Implication on the nature of felsic magmatism in the collision tectonics

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Felsic magmatism in the southern part of Himachal Higher Himalaya is constituted by Neoproterozoic granite gneiss (GGn), Early Palaeozoic granitoids (EPG) and Tertiary tourmaline-bearing leucogranite (TLg). Magnetic susceptibility values (<3 ×10−3 SI), molar Al2 O 3/(CaO + Na2 O + K 2O) (≥1.1), mineral assemblage (bt–ms–pl–kf–qtz ± tur ± ap), and the presence of normative corundum relate these granitoids to peraluminous S-type, ilmenite series (reduced type) granites formed in a syncollisional tectonic setting. Plagioclase from GGn (An10–An31) and EPG (An15–An33) represents oligoclase to andesine and TLg (An2–An15) represents albite to oligoclase, whereas compositional ranges of K-feldspar are more-or-less similar (Or88 to Or95 in GGn, Or86 to Or97 in EPG and Or87 to Or94 in TLg). Biotites in GGn (Mg/Mg + Fet= 0.34–0.45), EPG (Mg/Mg + Fet= 0.27–0.47), and TLg (Mg/Mg + Fet= 0.25–0.30) are ferribiotites enriched in siderophyllite, which stabilised between FMQ and HM buffers and are characterised by dominant 3Fe\(\rightleftharpoons \)2Al, 3Mg\(\rightleftharpoons \)2Al substitutions typical of peraluminous (S-type), reducing felsic melts. Muscovite in GGn (Mg/Mg + Fet=0.58–0.66), EPG (Mg/Mg + Fet=0.31−0.59), and TLg (Mg/Mg + Fet=0.29–0.42) represent celadonite and paragonite solid solutions, and the tourmaline from EPG and TLg belongs to the schorl-elbaite series, which are characteristics of peraluminous, Li-poor, biotite-tourmaline granites. Geochemical features reveal that the GGn and EPG precursor melts were most likely derived from melting of biotite-rich metapelite and metagraywacke sources, whereas TLg melt appears to have formed from biotite-muscovite rich metapelite and metagraywacke sources. Major and trace elements modelling suggest that the GGn, EPG and TLg parental melts have experienced low degrees (∼13, ∼17 and ∼13%, respectively) of kf–pl–bt fractionation, respectively, subsequent to partial melting. The GGn and EPG melts are the results of a pre-Himalayan, syn-collisional Pan-African felsic magmatic event, whereas the TLg is a magmatic product of Himalayan collision tectonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  • Abdel-Rahman A M 1994 Nature of biotites from alkaline, calc-alkaline and peraluminous magmas; J. Petrol. 35 525–541.

    Article  Google Scholar 

  • Acosta-Vigil A, London D, Morgan V. G B and Dewers T A 2003 Solubility of excess alumina in hydrous granitic melts in equilibrium with peraluminous minerals at 700–800C and 200 MPa, and applications of the alumina saturation index; Contrib. Mineral. Petrol. 146 100–119.

    Article  Google Scholar 

  • Balaram V and Gnaneshwar Rao T 2003 Rapid determination of REEs and other trace elements in geological samples by microwave acid digestion and ICP-MS; Atomic Spectros. 24 206–212.

    Google Scholar 

  • Balaram V, Ramesh S L and Anjaiah K V 1996 New trace element and REE data in thirteen GSF reference samples by ICP-MS; Geostand. Newslett. 20 71–78.

    Article  Google Scholar 

  • Ban M, Takahashi K, Horie T and Toya N 2005 Petrogenesis of mafic inclusions in rhyolitic lavas from the Narugo volcano, Japan; J. Petrol. 46 1544–1563.

    Article  Google Scholar 

  • Barbarin B 1996 Genesis of two main types of peraluminous granitoids; Geology 24 295–298.

    Article  Google Scholar 

  • Bartarya S K, Virdi N S and Sah M P 1996 Landslides hazards: Some case studies from the Satluj valley, Himachal Pradesh; Him. Geol. 17 193–207.

    Google Scholar 

  • Bassi U K and Chopra S 1983 A contribution to the geology of Kinnaur Himalaya, Himachal Pradesh; Indian J. Earth Sci. 10 96–99.

    Google Scholar 

  • Batchelor R A and Bowden P 1985 Petrogenetic interpretation of granitoid rock series using multicationic parameters; Chem. Geol. 48 43–55.

    Article  Google Scholar 

  • Beane R E 1974 Biotite stability in the porphyry copper environment; Econ. Geol. 69 241–256.

    Article  Google Scholar 

  • Benincasa E, Brigatti M F, Poppi L and Barredo F B 2003 Crystal chemistry of dioctahedral micas from peraluminous granites: The Pedrobernardo pluton (central Spain); Eur. J. Mineral. 15 543–550.

    Article  Google Scholar 

  • Bhargava O N 1982 The tectonic windows of the Lesser Himalaya; Him. Geol. 10 135–155.

    Google Scholar 

  • Bhargava O N, Bassi U K and Sharma R K 1991 The crystalline thrust sheets, age of metamorphism, evolution and mineralization of the Himachal Himalaya; Indian Mineral. 45 1–18.

    Google Scholar 

  • Blundy J D and Shimizu N 1991 Trace element evidence for plagioclase recycling in calc alkaline magmas; Earth Planet. Sci. Lett. (Amsterdam) 102 178–197.

    Article  Google Scholar 

  • Bryan W B, Finger L W and Chayes F 1969 Estimating proportions in petrographic mixing equations by least-squares approximation; Science 163 926–927.

    Article  Google Scholar 

  • Burkhard D J M 1991 Temperature and redox path of biotite-bearing intrusives: A method of estimation applied to S- and I-type granites from Australia; Earth Planet. Sci. Lett. 104 89–98.

    Article  Google Scholar 

  • Chappell B W and Stephens W E 1988 Origin of infracrustal (I-type) granite magmas; Trans. Royal Soc. Edin., Earth Sci. 79 71–86.

    Article  Google Scholar 

  • Chappell B W and White A J R 1974 Two contrasting granite types; Pacific Geol. 8 173–174.

    Google Scholar 

  • Clarke B D 1992 Granitoid rocks; Chapman and Hall, London, 283p.

    Google Scholar 

  • Collins W J and Sawyer E W 1996 Pervasive granitoid magma transfer through the lower-middle crust during non-coaxial compressional deformation; J. Metamorph. Geol. 14 565–579.

    Article  Google Scholar 

  • Cox K G, Bell J D and Pankhurst R J 1979 The interpretation of igneous rocks; George Alien and Unwin, London, 450p.

    Book  Google Scholar 

  • De Albuquerque C A R 1973 Geochemistry of biotites from granitic rocks, northern Portugal; Geochim. Cosmochim. Acta 37 1777–1802.

    Article  Google Scholar 

  • De la Roche H, Leterrier J, Grandclaude P and Marchal M 1980 A classification of volcanic and plutonic rocks using R1–R2 diagrams and major element analysis – its relationship with current nomenclature; Chem. Geol. 29 183–210.

    Article  Google Scholar 

  • Debon F and Le Fort P 1983 A chemical-mineralogical classification of common plutonic rocks and associations; Trans. Royal Soc. Edin., Earth Sci. 73 135–149.

    Article  Google Scholar 

  • Deer W A, Howie R A and Zussman J 1963 Rock-forming minerals, Sheet silicates; Longmans, Green and Co., London 3, 270p.

  • Drake M J 1975 The oxidation state of europium as a indicator of oxygen fugacity; Geochim. Cosmochim. Acta 39 55–64.

    Article  Google Scholar 

  • Dymek R F 1983 Titanium, aluminium and interlayer cation substitutions in biotite from high grade gneisses, west Greenland; Am. Mineral. 68 880–899.

    Google Scholar 

  • Foit F F and Rosenberg P E 1979 The structure of vanadium-bearing tourmaline and its implications regarding tourmaline solid solutions; Am. Mineral. 64 788–798.

    Google Scholar 

  • Foster M D 1960 Interpretation of the composition of trioctahedral micas; U.S. Geol. Surv. Prof. Paper 354B 1–49.

    Google Scholar 

  • Gansser A 1964 Geology of the Himalaya; Interscience Publ., John Wiley and Sons Ltd., London, 289p.

    Google Scholar 

  • Gast P W 1968 Trace element fractionation and origin of tholeiitic and alkaline magma types; Geochim. Cosmochim. Acta 32 1057–1176.

    Article  Google Scholar 

  • Guillot S and Le Fort P 1995 Geochemical constraints on the bimodal origin of High Himalayan leucogranites; Lithos 35 221–234.

    Article  Google Scholar 

  • Gupta V, Virdi N S and Prakash S 2001 Morphometric assessment of active landslides in the higher Himalayan crystallines, Satluj valley, Himachal Pradesh (India); Him. Geol. 22 99–107.

    Google Scholar 

  • Harris N B W and Inger S 1992 Trace element modelling of pelite derived granitoids; Contrib. Mineral. Petrol. 110 46–56.

    Article  Google Scholar 

  • Hawthorne F C and Henry D J 1999 Classification of the minerals of the tourmaline group; Eur. J. Mineral. 11 201–215.

    Article  Google Scholar 

  • Henry D J and Guidotti C V 1985 Tourmaline as a petrogenetic indicator mineral: An example from the staurolite- grade metapelites of NW Maine; Am. Mineral. 70 1–15.

    Google Scholar 

  • Ishihara S 1977 The magnetite-series and ilmenite-series granitic rocks; Mining Geol. 27 293–305.

    Google Scholar 

  • Ishihara S 1984 Granitoid series and Mo/Sn-W mineralization in east Asia; Geol. Surv. Japan Rep. 263 173–208.

    Google Scholar 

  • Ishihara S and Matsuhisa Y 1999 Oxygen isotopic constraints on the genesis of the Miocene Outer Zone in Japan; Lithos 46 523–534.

    Article  Google Scholar 

  • Ishihara S, Robb L J, Anhaeusser C R and Imai A 2002 Granitoid series in terms of magnetic susceptibility: A case study from the Barberton region, South Africa; Gondwana Res. 5 581–589.

    Article  Google Scholar 

  • Islam R and Gururajan N S 2003 Geochemistry, petrogenesis and tectonic setting of Akpa-Rakcham granites of Sutlej valley, Himachal Pradesh, India; Him. Geol. 24 63–76.

    Google Scholar 

  • Islam R, Ahmad T and Khanna P P 2005 An overview on the granitoids of the NW Himalaya; Him. Geol. 26 49–60.

    Google Scholar 

  • Kakar R K 1988 Geology and tectonic setting of central crystalline rocks of southern parts of Higher Himachal Himalaya; J. Geol. Soc. India 31 243–250.

    Google Scholar 

  • Kawakami T and Kobayashi T 2006 Trace element composition and degree of partial melting of pelitic migmatites from the Aoyama area, Ryoke metamorphic belt, SW Japan: Implications for the source region of tourmaline leucogranites; Gondwana Res. 9 176–188.

    Article  Google Scholar 

  • Kennedy W Q 1964 The structural differentiation of Africa in the Pan-African (±500) tectonic episode; 8th annual report, Research Inst. African Geology, Univ. of Leeds, Leeds, 48p.

    Google Scholar 

  • Kretz R 1983 Symbols for rock forming minerals; Am. Mineral. 68 277–279.

    Google Scholar 

  • Kröner A 1984 Ophiolites and the evolution of tectonic boundaries in the Late Proterozoic Arabian–Nubian shield of northeast Africa and Arabia; Precamb. Res. 27 277–300.

    Article  Google Scholar 

  • Kumar S and Kmet J 1995 The calculated magma differentiation trend of the Hodruša–Štiavnica intrusive complex, western Carpathians; Bull. Czech. Geol. Surv. 70 15–18.

    Google Scholar 

  • Kumar S, Singh B N and Joshi M 1996 Petrogenesis and tectonomagmatic environment of Cambro-Ordovician granitoids of Himalaya: A reappraisal; In: Proc. Sym. NW Himalaya and Foredeep; Geol. Surv. India Spec. Publ. 21 205–214.

  • Kwatra S K, Singh S, Singh V P, Sharma R K, Bimal Rai and Naval Kishor 1999 Geochemical and geochronological characteristics of the Early Palaeozoic granitoids from Sutlej–Baspa valleys, Himachal Himalayas; In: Geodynamics of the NW Himalaya (eds) Jain A K and Manickavasagam R M, Gond. Res. Group, Memoir 6 145–158.

  • Laymere J and Bowden P 1982 Plutonic rock type series: Discrimination of various granitoid series and related rocks; J. Volcanol. Geoth. Res. 14 169–186.

    Article  Google Scholar 

  • Le Fort P 1975 Himalayas: The collided range. Present knowledge of the continental arc; Am. J. Sci. 275 1–44.

    Article  Google Scholar 

  • Le Fort P 1981 Manaslu leucogranite: A collision signature of the Himalaya. A model for its genesis and emplacement; J. Geophys. Res. 86 10,555–10,568.

    Article  Google Scholar 

  • Le Fort P, Debon F, Pecher A, Sonet J and Vidal P 1986a The 500 Ma magmatic event in Alpine Southern Asia: A thermal episode at Gondwana scale; Sciences de la Terre, Memoir 47 191–209.

  • Le Fort P, Debon F and Sonet J 1986b The ‘Lesser Himalayan’ cordierite granite belt: Typology and age of the pluton of Manserah (Pakistan); Proc. Int. Geodynamic Conf., Peshawar; Univ. Peshawar Geol. Bull. 13 51–61.

  • Lee S -Y, Barnes C G, Howard K A, Frost C D and Snoke A W 2003 Petrogenesis of Mesozoic peraluminous granites in the Lamoille Canyon area, Ruby Mountains, Nevada, USA; J. Petrol. 44 713–732.

    Article  Google Scholar 

  • LeMaitre R W 2002 Igneous rocks: A classification and glossary of terms. Recommendations of the International Union of Geological Sciences; Subcommission on the Systematics of Igneous rocks. 2nd edn; Cambridge University Press, Cambridge, 236p.

    Book  Google Scholar 

  • London D and Manning D A C 1995 Chemical variation and significance of tourmaline from southwest England; Econ. Geol. 90 495–519.

    Article  Google Scholar 

  • Loomis T P 1982 Numerical simulations of crystallisation processes of plagioclase in complex melts: The origin of major and oscillatory zoning in plagioclase; Contrib. Mineral. Petrol. 81 219–229.

    Article  Google Scholar 

  • Mehnert K R 1968 Migmatites and the origin of granitic rocks; Dev. Petrol. 1, Elsevier, Amsterdam, 393p.

    Google Scholar 

  • Mehta P K 1977 Rb–Sr geochronology of the Kulu–Mandi belt: Its implication for the Himalayan tectonogenesis; Geologischa Rundschau 66 156–288.

    Article  Google Scholar 

  • Miller C F, Stoddard E F, Bradfish L J and Dollase W A 1981 Composition of plutonic muscovite: Genetic implications; Can. Mineral. 19 25–34.

    Google Scholar 

  • Miller C, Klötzli U, Frank W, Thöni M and Grasemann B 2000 Proterozoic crustal evolution in the NW Himalaya (India) as recorded by circa 1.80 Ga mafic and 1.84 Ga granitic magmatism; Precamb. Res. 103 191–206.

    Article  Google Scholar 

  • Mishra D K 1993 Tectonic setting and deformational features in Satluj and Beas valleys of Himachal Pradesh; Indian J. Petrol. Geol. 2 81–92.

    Google Scholar 

  • Monier G and Robert J L 1986 Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: An experimental study in the system K2O–Li2O–MgO–FeO–Al2 O 3–SiO2–H2O–HF at 600C, 2 kbar PH2O: Comparison with natural lithium micas; Mineral. Mag. 50 641–651.

    Article  Google Scholar 

  • Murata M 1993 Major and trace elements analysis of Korea Institute of Energy and Resources igneous rock reference samples using X-ray fluorescence spectrometer; J. Naruto Coll. Edue 8 37–50 (in Japanese with English abstract).

    Google Scholar 

  • Nance R D, Murphy J B and Santosh M 2013 The supercontinent cycle: A retrospective essay; Gondwana Res. 25 4–29.

    Article  Google Scholar 

  • Nash W P and Crecraft H R 1985 Partition coefficients for trace elements in silicic magmas; Geochim. Cosmochim. Acta 49 2300–2322.

    Article  Google Scholar 

  • Patiño Douce A E 1999 What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Understanding granites: Integrating new and classical techniques (eds) Castro A, Fernandes C and Vigneresse J, Geol. Soc. London Spec. Publ. 168 55–75.

  • Pearce J A, Harris N B W and Tindle A G 1984 Trace element discrimination diagrams for the tectonic interpretation of granitic rocks; J. Petrol. 25 956–983.

    Article  Google Scholar 

  • Roy A B 1999 Neoproterozoic crustal evolution and India- Gondwana linkage – an epilogue; Gondwana Res. 2 193–198.

    Article  Google Scholar 

  • Scaillet B, France-Lanord C and Le Fort P 1990 Badrinath-Gangotri plutons (Garhwal, India): Petrological and geochemical evidence for fractionation processes in a High Himalayan leucogranite; J. Volcanol. Geotherm. Res. 44 163–188.

    Article  Google Scholar 

  • Searle M P 1999 Emplacement of Himalayan leucogranites by magma injection along giant sill complexes: Examples from the Cho Oyu, Gyachung Kang and Everest leucogranites (Nepal Himalaya); J. Asian Earth Sci. 17 773–783.

    Article  Google Scholar 

  • Searle M P and Fryer B J 1986 Garnet, tourmaline and muscovite bearing leucogranites, gneisses and migmatites of the Higher Himalayas from Zanskar, Kulu, Lahoul and Kashmir; In: Collision Tectonics (eds) Coward M P and Ries A C, Geol. Soc. Spec. Publ. 19 185–201.

  • Searle M P, Parrish R R, Hodges K V, Hurford A, Ayres M W and Whitehouse M J 1997 Shisha Pangma leucogranite, South Tibetan Himalaya: Field relations, geochemistry, age, origin and emplacement; J. Geol. 105 295–317.

    Article  Google Scholar 

  • Sharma K K 1976 A contribution to the geology of Satluj valley, Kinnaur, Himachal Pradesh, India; In: Colloques Inter. CNRS: Himalaya Science de la Terre, CNRS, Paris 268 369–378.

  • Sharma K K and Rashid S A 2001 Geochemical evolution of peraluminous Palaeoproterozoic Bandal orthogneiss, NW Himalaya, Himachal Pradesh, India: Implications for the ancient crustal growth in the Himalaya; J. Asian Earth Sci. 19 413–428.

    Article  Google Scholar 

  • Singh B and Kumar S 2005 Petrogenetic appraisal of Early Palaeozoic granitoids of Kinnaur district, Higher Himachal Himalaya, India; Gondwana Res. 8 67–76.

    Article  Google Scholar 

  • Slivko M M 1959 Manganese tourmalines; Mineral. Sborn. Lvov 13 139–148 (in Russian).

    Google Scholar 

  • Srikantia S V and Bhargava O N 1998 Geology of Himachal Pradesh; Geol. Soc. India Memoir 9 Bangalore, 406p.

  • Stern R J 1994 Arc assembly and continental collision in the Neoproterozoic East African orogen: Implications for the consolidation of Gondwanaland; Ann. Rev. Earth Planet. Sci. 22 319–351.

    Article  Google Scholar 

  • Stern C R, Kligfield R, Schelling D, Virdi N S, Futa K, Peterman Z E and Amini H 1989 The Bhagirathi leucogranite of the High Himalaya (Garhwal, India): Age, petrogenesis and tectonic implications; Geol. Soc. Am. Spec. Paper 232 33–45.

    Article  Google Scholar 

  • Streckeisen A 1973 Plutonic rocks. Classification and nomenclature recommended by the IUGS Subcommission on the systematic of Igneous rocks; Geotimes 18 (10) 26–30.

    Google Scholar 

  • Stone M, Exley C S and George M C 1986 Composition of trioctahedral micas in the Cornubian batholith; Mineral. Mag. 52 175–192.

    Article  Google Scholar 

  • Sun S S and Mc Donough W F 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes; (eds) Saunders A D and Norry M S, In: Magmatism in ocean basins Geol. Soc. London Sec. Publ. 42 313–345.

    Google Scholar 

  • Taylor S R and McLennan S M 1985 The continental crust: Its composition and evolution; Blackwell, Oxford, 295p.

    Google Scholar 

  • Thorpe R S, Tindle A G and Gledhill A 1990 The petrology and origin of the Tertiary Lundy granite (Bristol Channel, UK); J. Petrol. 31 1377–1406.

    Article  Google Scholar 

  • Tindle A G and Webb P C 1990 Estimation of lithium contents in trioctahedral micas using microprobe data: Application to micas from granitic rocks; Eur. J. Min. 2 595–610.

    Article  Google Scholar 

  • Tischendorf G 1997 Geochemical and petrographic characteristics of silicic magmatic rocks associated with rare metal mineralization (eds) Stempork M, Burnol L and Tischendorf G, In: Ustredni Ustav Geologicky Prague 2 41–98.

  • Tischendorf G, Förster H J and Gottesmann B 1999 The correlation between lithium and magnesium in trioctahedral micas: Improved equation for Li2O estimation from MgO data; Mineral. Mag. 63 57–74.

    Article  Google Scholar 

  • Torres-Ruiz J, Pesquera A and Sánches-Vizcaino L 2003 Chromian tourmaline and associated Cr-bearing minerals from the Nevado-Filábride Comples (Betic Cordilleras, SE Spain); Mineral. Mag. 67 517–533.

    Article  Google Scholar 

  • Valdiya K S 1995 Proterozoic sedimentation and Pan-African geodynamic developments in the Himalaya; Precamb. Res. 74 35–55.

    Article  Google Scholar 

  • Vance J A 1965 Zoning in igneous plagioclase: Patchy zoning; J. Geol. 73 636–651.

    Article  Google Scholar 

  • Vernon R H 1986 K-feldspar megacrysts in granites-phenocrysts, not porphyroblasts; Earth Sci. Rev. 23 1–63.

    Article  Google Scholar 

  • Vidal P, Cocherie A and Le Fort P 1982 Geochemical investigation of the origin of the Manaslu leucogranite (Himalaya Nepal); Geochim. Cosmochim. Acta 46 2277–2292.

    Article  Google Scholar 

  • Visonā D and Lombardo B 2002 Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal-Tibet). Himalayan leucogranite genesis by isobaric heating; Lithos 62 125–150.

    Article  Google Scholar 

  • Wiebe R A 1968 Plagioclase stratigraphy: A record of magmatic conditions and events in a granitic stock; Am. J. Sci. 266 690–703.

    Article  Google Scholar 

  • Wones D R and Eugster H P 1965 Stability of biotite: Experiment, theory and application; Am. Mineral. 50 1222–1272.

    Google Scholar 

  • Wyllie P J 1997 Crustal anatexis: An experimental review; Tectonophys. 43 41–71.

    Article  Google Scholar 

  • Yamada Y, Kohno H and Murata M 1985 A low dilution fusion method for major and trace element analysis of geological samples; Advances in X-ray Analysis 26 23–44 (in Japanese with English abstract).

    Google Scholar 

  • Yavuz F 1997 Tourmal: software package for tourmaline, tourmaline-rich rocks and related ore deposits; Comput. Geosci. 23 947–959.

    Article  Google Scholar 

  • Yavuz F 2001 Limica: A program for estimating Li from electron microprobe mica analyses and classifying trioctahedral micas in terms of composition and octahedral site occupancy; Comput. Geosci. 27 215–227.

    Article  Google Scholar 

  • Yavuz F and Öztas T 1997 Bioterm: A program for evaluating and plotting microprobe analyses of biotite from barren and mineralized magmatic suites; Comput. Geosci. 23 897–907.

    Article  Google Scholar 

  • Yoder H J, Stewart D B and Smith J R 1957 Feldspars; Carnegie Inst. Wash. Year Book 56 206–214.

    Google Scholar 

Download references

Acknowledgements

The research work was partly supported by DST-New Delhi grant and partly by INSA-JSPS Fellowship awarded to Santosh Kumar (ID No. AP210219004). Prof Hisao Tanaka is thanked for continuing support in this study at Yamagata University, Japan. Dr V Balaram is thanked for extending ICP-MS analytical facility at National Geophysical Research Institute, Hyderabad, India. Dr Tamal K Ghosh helped with electron microprobe analysis at Indian Institute of Technology, Roorkee. E W Sawyer is highly thanked for constructive scientific comments and correction of language. Comments from two anonymous reviewers have greatly improved the earlier version. Rajesh K Srivastava is thanked for scientific and editorial remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar.

Additional information

Corresponding editor: R K Srivastava

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Kumar, S., Ban, M. et al. Mineralogy and geochemistry of granitoids from Kinnaur region, Himachal Higher Himalaya, India: Implication on the nature of felsic magmatism in the collision tectonics. J Earth Syst Sci 125, 1329–1352 (2016). https://doi.org/10.1007/s12040-016-0748-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-016-0748-0

Keywords

Navigation