Skip to main content

Advertisement

Log in

A Novel Terminator Primer and Enhancer Reagents for Direct Expression of PCR-Amplified Genes in Mammalian Cells

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Escherichia coli plasmids are commonly used for gene expression experiments in mammalian cells, while PCR-amplified DNAs are rarely used even though PCR is a much faster and easier method to construct recombinant DNAs. One difficulty may be the limited amount of DNA produced by PCR. For direct utilization of PCR-amplified DNA in transfection experiments, efficient transfection with a smaller amount of DNA should be attained. For this purpose, we investigated two enhancer reagents, polyethylene glycol and tRNA, for a chemical transfection method. The addition of the enhancers to a commercial transfection reagent individually and synergistically exhibited higher transfection efficiency applicable for several mammalian cell culture lines in a 96-well plate. By taking advantage of a simple transfection procedure using PCR-amplified DNA, SV40 and rabbit β-globin terminator lengths were minimized. The terminator length is short enough to design in oligonucleotides; thus, terminator primers can be used for the construction and analysis of numerous mutations, deletions, insertions, and tag-fusions at the 3′-terminus of any gene. The PCR-mediated gene manipulation with the terminator primers will transform gene expression by allowing for extremely simple and high-throughput experiments with small-scale, multi-well, and mammalian cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Witzgall, R., O’Leary, E., & Bonventre, J. V. (1994). A mammalian expression vector for the expression of GAL4 fusion proteins with an epitope tag and histidine tail. Analytical Biochemistry, 223, 291–298.

    Article  CAS  Google Scholar 

  2. Lejard, V., Rebours, E., Meersseman, C., & Rocha, D. (2014). Construction and validation of a novel dual reporter vector for studying mammalian bidirectional promoters. Plasmid, 74, 1–8.

    Article  CAS  Google Scholar 

  3. Elmileik, H., Kumagai, T., Berengena, M., Ueda, K., & Sugiyama, M. (2001). Use of bleomycin- and heat shock-induced calreticulin promoter for construction of a mammalian expression vector. Journal of Biochemistry, 129, 671–674.

    Article  CAS  Google Scholar 

  4. Roure, A., Rothbacher, U., Robin, F., Kalmar, E., Ferone, G., Lamy, C., et al. (2007). A multicassette gateway vector set for high throughput and comparative analyses in ciona and vertebrate embryos. PLoS One, 2, e916.

    Article  Google Scholar 

  5. Tan, R., Li, C., Jiang, S., & Ma, L. (2006). A novel and simple method for construction of recombinant adenoviruses. Nucleic Acids Research, 34, e89.

    Article  Google Scholar 

  6. Matsumoto, A., & Itoh, T. Q. (2011). Self-assembly cloning: a rapid construction method for recombinant molecules from multiple fragments. BioTechniques, 51, 55–56.

    Article  CAS  Google Scholar 

  7. You, L. M., Luo, J., Wang, A. P., Zhang, G. P., Weng, H. B., Guo, Y. N., et al. (2010). A hybrid promoter-containing vector for direct cloning and enhanced expression of PCR-amplified ORFs in mammalian cells. Molecular Biology Reports, 37, 2757–2765.

    Article  CAS  Google Scholar 

  8. Sugiyama, H., Niwa, H., Makino, K., & Kakunaga, T. (1988). Strong transcriptional promoter in the 5′ upstream region of the human beta-actin gene. Gene, 65, 135–139.

    Article  CAS  Google Scholar 

  9. Wilkinson, G. W., & Akrigg, A. (1992). Constitutive and enhanced expression from the CMV major IE promoter in a defective adenovirus vector. Nucleic Acids Research, 20, 2233–2239.

    Article  CAS  Google Scholar 

  10. Teschendorf, C., Warrington, K. H, Jr, Siemann, D. W., & Muzyczka, N. (2002). Comparison of the EF-1 alpha and the CMV promoter for engineering stable tumor cell lines using recombinant adeno-associated virus. Anticancer Research, 22, 3325–3330.

    CAS  Google Scholar 

  11. Jianwei, D., Qianqian, Z., Songcai, L., Mingjun, Z., Xiaohui, R., Linlin, H., et al. (2012). The combination of a synthetic promoter and a CMV promoter improves foreign gene expression efficiency in myocytes. Journal of Biotechnology, 158, 91–96.

    Article  Google Scholar 

  12. Cab-Barrera, E. L., & Barrera-Saldana, H. A. (1988). Versatile plasmid vectors for use in studies of eukaryotic gene expression. Gene, 70, 411–413.

    Article  CAS  Google Scholar 

  13. Kim, D., Kim, J. D., Baek, K., Yoon, Y., & Yoon, J. (2003). Improved mammalian expression systems by manipulating transcriptional termination regions. Biotechnology Progress, 19, 1620–1622.

    Article  CAS  Google Scholar 

  14. Falck-Pedersen, E., Logan, J., Shenk, T., & Darnell, J. E, Jr. (1985). Transcription termination within the E1A gene of adenovirus induced by insertion of the mouse beta-major globin terminator element. Cell, 40, 897–905.

    Article  CAS  Google Scholar 

  15. Petitclerc, D., Attal, J., Theron, M. C., Bearzotti, M., Bolifraud, P., Kann, G., et al. (1995). The effect of various introns and transcription terminators on the efficiency of expression vectors in various cultured cell lines and in the mammary gland of transgenic mice. Journal of Biotechnology, 40, 169–178.

    Article  CAS  Google Scholar 

  16. Fritze, C. E., & Anderson, T. R. (2000). Epitope tagging: general method for tracking recombinant proteins. Methods in Enzymology, 327, 3–16.

    Article  CAS  Google Scholar 

  17. Bell, M. R., Engleka, M. J., Malik, A., & Strickler, J. E. (2013). To fuse or not to fuse: what is your purpose? Protein Science : A Publication of the Protein Society, 22, 1466–1477.

    Article  CAS  Google Scholar 

  18. Zhao, X., Li, G., & Liang, S. (2013). Several affinity tags commonly used in chromatographic purification. Journal of Analytical Methods in Chemistry, 2013, 581093.

    Article  Google Scholar 

  19. Naylor, L. H. (1999). Reporter gene technology: the future looks bright. Biochemical Pharmacology, 58, 749–757.

    Article  CAS  Google Scholar 

  20. Welsh, D. K., & Kay, S. A. (2005). Bioluminescence imaging in living organisms. Current Opinion in Biotechnology, 16, 73–78.

    Article  CAS  Google Scholar 

  21. Prescher, J. A., & Contag, C. H. (2010). Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Current Opinion in Chemical Biology, 14, 80–89.

    Article  CAS  Google Scholar 

  22. Jiang, T., Xing, B., & Rao, J. (2008). Recent developments of biological reporter technology for detecting gene expression. Biotechnology and Genetic Engineering Reviews, 25, 41–75.

    Article  CAS  Google Scholar 

  23. Qureshi, S. A. (2007). Beta-lactamase: an ideal reporter system for monitoring gene expression in live eukaryotic cells. BioTechniques, 42, 91–96.

    Article  CAS  Google Scholar 

  24. Chalfie, M. (1995). Green fluorescent protein. Photochemistry and Photobiology, 62, 651–656.

    Article  CAS  Google Scholar 

  25. Chen, S., Zhou, D., Swiderek, K. M., Kadohama, N., Osawa, Y., & Hall, P. F. (1993). Structure-function studies of human aromatase. The Journal of Steroid Biochemistry and Molecular Biology, 44, 347–356.

    Article  CAS  Google Scholar 

  26. Grabenhorst, E., Schlenke, P., Pohl, S., Nimtz, M., & Conradt, H. S. (1999). Genetic engineering of recombinant glycoproteins and the glycosylation pathway in mammalian host cells. Glycoconjugate Journal, 16, 81–97.

    Article  CAS  Google Scholar 

  27. Safinya, C. R. (2001). Structures of lipid-DNA complexes: supramolecular assembly and gene delivery. Current Opinion in Structural Biology, 11, 440–448.

    Article  CAS  Google Scholar 

  28. Li, W., & Szoka, F. C, Jr. (2007). Lipid-based nanoparticles for nucleic acid delivery. Pharmaceutical Research, 24, 438–449.

    Article  Google Scholar 

  29. Gopalakrishnan, B., & Wolff, J. (2009). siRNA and DNA transfer to cultured cells. Methods in Molecular Biology, 480, 31–52.

    Article  CAS  Google Scholar 

  30. Prasher, D. C. (1995). Using GFP to see the light. Trends in Genetics, 11, 320–323.

    Article  CAS  Google Scholar 

  31. Niwa, H., Yamamura, K., & Miyazaki, J. (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene, 108, 193–199.

    Article  CAS  Google Scholar 

  32. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., & Nishimune, Y. (1997). ‘Green mice’ as a source of ubiquitous green cells. FEBS Letters, 407, 313–319.

    Article  CAS  Google Scholar 

  33. Nakamura, M., Suzuki, A., Hoshida, H., & Akada, R. (2014). Minimum GC-rich sequences for overlap extension PCR and primer annealing. Methods in Molecular Biology, 1116, 165–181.

    Article  CAS  Google Scholar 

  34. Fischer, W., Puls, J., Buhrdorf, R., Gebert, B., Odenbreit, S., & Haas, R. (2001). Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Molecular Microbiology, 42, 1337–1348.

    Article  CAS  Google Scholar 

  35. Iakhiaeva, E., Hinck, C. S., Hinck, A. P., & Zwieb, C. (2009). Characterization of the SRP68/72 interface of human signal recognition particle by systematic site-directed mutagenesis. Protein Science, 18, 2183–2195.

    Article  CAS  Google Scholar 

  36. Burre, J., Sharma, M., & Sudhof, T. C. (2012). Systematic mutagenesis of alpha-synuclein reveals distinct sequence requirements for physiological and pathological activities. The Journal of Neuroscience, 32, 15227–15242.

    Article  CAS  Google Scholar 

  37. Seng, K. C., & Seng, C. K. (2008). The success of the genome-wide association approach: a brief story of a long struggle. European Journal of Human Genetics, 16, 554–564.

    Article  CAS  Google Scholar 

  38. Hsu, C. Y., & Uludag, H. (2008). Effects of size and topology of DNA molecules on intracellular delivery with non-viral gene carriers. BMC Biotechnology, 8, 23.

    Article  Google Scholar 

  39. Dhanoya, A., Chain, B. M., & Keshavarz-Moore, E. (2011). The impact of DNA topology on polyplex uptake and transfection efficiency in mammalian cells. Journal of Biotechnology, 155, 377–386.

    Article  CAS  Google Scholar 

  40. Remaut, K., Sanders, N. N., Fayazpour, F., Demeester, J., & De Smedt, S. C. (2006). Influence of plasmid DNA topology on the transfection properties of DOTAP/DOPE lipoplexes. Journal of Controlled Release, 115, 335–343.

    Article  CAS  Google Scholar 

  41. Kamiya, H., Yamazaki, J., & Harashima, H. (2002). Size and topology of exogenous DNA as determinant factors of transgene transcription in mammalian cells. Gene Therapy, 9, 1500–1507.

    Article  CAS  Google Scholar 

  42. Weintraub, H., Cheng, P. F., & Conrad, K. (1986). Expression of transfected DNA depends on DNA topology. Cell, 46, 115–122.

    Article  CAS  Google Scholar 

  43. Cherng, J. Y., Schuurmans-Nieuwenbroek, N. M., Jiskoot, W., Talsma, H., Zuidam, N. J., Hennink, W. E., & Crommelin, D. J. (1999). Effect of DNA topology on the transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid complexes. Journal of Controlled Release, 60, 343–353.

    Article  CAS  Google Scholar 

  44. Shen, H., Hu, Y., & Saltzman, W. M. (2006). DNA diffusion in mucus: effect of size, topology of DNAs, and transfection reagents. Biophysical Journal, 91, 639–644.

    Article  CAS  Google Scholar 

  45. Suzuki, H., Fukunishi, Y., Kagawa, I., Saito, R., Oda, H., Endo, T., et al. (2001). Protein–protein interaction panel using mouse full-length cDNAs. Genome Research, 11, 1758–1765.

    Article  CAS  Google Scholar 

  46. Hoat, T. X., Bertin, N., Ninomiya, N., Fukuda, S., Usui, K., Kawai, J., et al. (2009). Development of a high-throughput method for the systematic identification of human proteins nuclear translocation potential. BMC Cell Biology, 10, 69.

    Article  Google Scholar 

  47. Xin, W., Zhang, Y. M., Xiao, J. H., & Huang, D. W. (2003). Construction of linear functional expression elements with DNA fragments created by site-specific DNA nickase, N.Bpu10 I, and exonuclease III. Biotechnology Letters, 25, 1913–1916.

    Article  CAS  Google Scholar 

  48. Xiao, J. H., Xin, W., Liu, Y. J., Murphy, R. W., & Huang, D. W. (2007). Generation of linear expression constructs by one-step PCR with vaccinia DNA topoisomerase I. Molecular Biotechnology, 35, 15–22.

    Article  CAS  Google Scholar 

  49. Sykes, K. F., & Johnston, S. A. (1999). Linear expression elements: a rapid, in vivo, method to screen for gene functions. Nature Biotechnology, 17, 355–359.

    Article  CAS  Google Scholar 

  50. Susa, T., Kato, T., & Kato, Y. (2008). Reproducible transfection in the presence of carrier DNA using FuGENE6 and Lipofectamine 2000. Molecular Biology Reports, 35, 313–319.

    Article  CAS  Google Scholar 

  51. Pradhan, K., & Gadgil, M. (2012). Effect of addition of ‘carrier’ DNA during transient protein expression in suspension CHO culture. Cytotechnology, 64, 613–622.

    Article  CAS  Google Scholar 

  52. Ross, P. C., & Hui, S. W. (1999). Polyethylene glycol enhances lipoplex-cell association and lipofection. Biochimica et Biophysica Acta, 1421, 273–283.

    Article  CAS  Google Scholar 

  53. Palmer, L. R., Chen, T., Lam, A. M., Fenske, D. B., Wong, K. F., MacLachlan, I., & Cullis, P. R. (2003). Transfection properties of stabilized plasmid-lipid particles containing cationic PEG lipids. Biochimica et Biophysica Acta, 1611, 204–216.

    Article  CAS  Google Scholar 

  54. Kawai, S., & Nishizawa, M. (1984). New procedure for DNA transfection with polycation and dimethyl sulfoxide. Molecular and Cellular Biology, 4, 1172–1174.

    CAS  Google Scholar 

  55. Schiestl, R. H., & Gietz, R. D. (1989). High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Current Genetics, 16, 339–346.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Yukie Misumi for technical assistance. This study was supported in part by the JSPS KAKENHI (Grant Nos. 25660080, 24658096) and the Adaptable and Seamless Technology Transfer Program through Target-Driven R&D (JST, Japan), and the YU “Pump-Priming Program” for fostering Research activities.

Conflicts of interest

Mikiko Nakamura, Ayako Suzuki, Junko Akada, Tohru Yarimizu, and Hisashi Hoshida: No competing interests exist. Rinji Akada: Yamaguchi University receives grant support from KOHJIN Life Sciences for studies in which Rinji Akada serves as the principal investigator. Ryo Iwakiri: As an employee of KOHJIN Life Sciences, Ryo Iwakiri participated in the development of the transfection enhancers but not as an applicant on a patent belonging to Yamaguchi University. These associations do not alter the authors’ adherence to Molecular Biotechnology policies on sharing data and materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikiko Nakamura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, M., Suzuki, A., Akada, J. et al. A Novel Terminator Primer and Enhancer Reagents for Direct Expression of PCR-Amplified Genes in Mammalian Cells. Mol Biotechnol 57, 767–780 (2015). https://doi.org/10.1007/s12033-015-9870-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9870-5

Keywords

Navigation