Skip to main content

Advertisement

Log in

APOBEC3B is an enzymatic source of molecular alterations in esophageal squamous cell carcinoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

APOBEC3B belongs to the cytidine deaminase apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC3) family of enzymes and induces C to T transitions of target DNA by cytidine deamination. Recently, several mutations in various cancers have been linked to APOBEC3B, suggesting a crucial role for this protein in carcinogenesis and cancer development. However, the significance of APOBEC3B in esophageal squamous cell carcinoma (ESCC) remains uncertain. In addition, the APOBEC3B immunoreactivity in cancer tissues is uncertain. Recently, we have demonstrated that PIK3CA mutation and the methylation level of long interspersed nucleotide element 1 (LINE-1) (a surrogate marker of global DNA methylation level) are prognostic markers and have crucial role on malignancy in ESCC patients. This study aims to clarify the impact of APOBEC3B on the clinical, pathological, and molecular features of ESCC. We evaluated APOBEC3B expression in ESCC and investigated the relationships among the immunoreactivity of APOBEC3B, clinical and pathological features, and the molecular features of ESCC (PIK3CA mutation, p53 expression, and LINE-1 methylation level). The immunoreactivity and mRNA level of APOBEC3B were significantly higher in cancer tissues than in noncancerous esophageal mucosae (P = 0.050). APOBEC3B expression was significantly correlated with PIK3CA mutation (P = 0.013), particularly with C to T transitions of PIK3CA (P = 0.041). Moreover, a high expression of APOBEC3B was significantly associated with LINE-1 hypomethylation (P = 0.027). Given the crucial roles of PIK3CA mutation and LINE-1 methylation levels, our findings might provide new insights into the biological mechanisms of ESCC tumorigenesis and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APOBEC:

Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like

ESCC:

Esophageal squamous cell carcinoma

LINE-1:

Long interspersed nucleotide element-1

PCR:

Polymerase chain reaction

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med. 2003;349(23):2241–52.

    Article  CAS  PubMed  Google Scholar 

  3. Allum WH, Stenning SP, Bancewicz J, Clark PI, Langley RE. Long-term results of a randomized trial of surgery with or without preoperative chemotherapy in esophageal cancer. J Clin Oncol. 2009;27(30):5062–7.

    Article  PubMed  Google Scholar 

  4. Rizk NP, Ishwaran H, Rice TW, Chen LQ, Schipper PH, Kesler KA, et al. Optimum lymphadenectomy for esophageal cancer. Ann Surg. 2010;251(1):46–50.

    Article  PubMed  Google Scholar 

  5. Thallinger CM, Raderer M, Hejna M. Esophageal cancer: a critical evaluation of systemic second-line therapy. J Clin Oncol. 2011;29(35):4709–14.

    Article  CAS  PubMed  Google Scholar 

  6. Shigaki H, Baba Y, Watanabe M, Murata A, Ishimoto T, Iwatsuki M, et al. PIK3CA mutation is associated with a favorable prognosis among patients with curatively resected esophageal squamous cell carcinoma. Clin Cancer Res. 2013;19(9):2451–9.

    Article  CAS  PubMed  Google Scholar 

  7. Murata A, Baba Y, Watanabe M, Shigaki H, Miyake K, Karashima R, et al. p53 immunohistochemical expression and patient prognosis in esophageal squamous cell carcinoma. Med Oncol. 2013;30(4):728.

    Article  PubMed  Google Scholar 

  8. Iwagami S, Baba Y, Watanabe M, Shigaki H, Miyake K, Ishimoto T, et al. LINE-1 hypomethylation is associated with a poor prognosis among patients with curatively resected esophageal squamous cell carcinoma. Ann Surg. 2013;257(3):449–55.

    Article  PubMed  Google Scholar 

  9. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, et al. Induction of tumors in mice by genomic hypomethylation. Science. 2003;300(5618):489–92.

    Article  CAS  PubMed  Google Scholar 

  10. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28.

    CAS  PubMed  Google Scholar 

  11. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  Google Scholar 

  12. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, et al. Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149(5):979–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet. 2013;45(9):970–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Burns MB, Temiz NA, Harris RS. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet. 2013;45(9):977–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Conticello SG. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008;9(6):229.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, Leonard B, et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature. 2013;494(7437):366–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Taylor BJ, Nik-Zainal S, Wu YL, Stebbings LA, Raine K, Campbell PJ, et al. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. Elife. 2013;2:e00534.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Chan K, Roberts SA, Klimczak LJ, Sterling JF, Saini N, Malc EP, et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat Genet. 2015;47(9):1067–72.

    Article  CAS  PubMed  Google Scholar 

  21. Walker BA, Wardell CP, Murison A, Boyle EM, Begum DB, Dahir NM, et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat Commun. 2015;6:6997.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Swanton C, McGranahan N, Starrett GJ, Harris RS. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov. 2015;5(7):704–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Siriwardena SU, Guruge TA, Bhagwat AS. Characterization of the catalytic domain of human APOBEC3B and the critical structural role for a conserved methionine. J Mol Biol. 2015;427(19):3042–55.

    Article  CAS  PubMed  Google Scholar 

  24. Leonard B, Hart SN, Burns MB, Carpenter MA, Temiz NA, Rathore A, et al. APOBEC3B upregulation and genomic mutation patterns in serous ovarian carcinoma. Cancer Res. 2013;73(24):7222–31.

    Article  CAS  PubMed  Google Scholar 

  25. Yang Z, Zhuang L, Yu Y, Zhou W, Lu Y, Xu Q, et al. Overexpression of APOBEC3F in tumor tissues is potentially predictive for poor recurrence-free survival from HBV-related hepatocellular carcinoma. Discov Med. 2015;20(112):349–56.

    PubMed  Google Scholar 

  26. Zhang Y, Delahanty R, Guo X, Zheng W, Long J. Integrative genomic analysis reveals functional diversification of APOBEC gene family in breast cancer. Hum Genomics. 2015;9(1):34.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Land AM, Wang J, Law EK, Aberle R, Kirmaier A, Krupp A, et al. Degradation of the cancer genomic DNA deaminase APOBEC3B by SIV Vif. Oncotarget. 2015;6(37):39969–79.

    PubMed  Google Scholar 

  28. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM, et al. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst. 2005;97(16):1180–4.

    Article  CAS  PubMed  Google Scholar 

  29. Ogino S, Kawasaki T, Nosho K, Ohnishi M, Suemoto Y, Kirkner GJ, et al. LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int J Cancer. 2008;122(12):2767–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Chan AT, Schernhammer ES, et al. A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst. 2008;100(23):1734–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Baba Y, Huttenhower C, Nosho K, Tanaka N, Shima K, Hazra A, et al. Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol Cancer. 2010;9:125.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Macduff DA, Harris RS. Directed DNA deamination by AID/APOBEC3 in immunity. Curr Biol. 2006;16(6):R186–9.

    Article  CAS  PubMed  Google Scholar 

  33. Jarmuz A, Chester A, Bayliss J, Gisbourne J, Dunham I, Scott J, et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics. 2002;79(3):285–96.

    Article  CAS  PubMed  Google Scholar 

  34. Goila-Gaur R, Strebel K. HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology. 2008;5:51.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Henderson S, Chakravarthy A, Su X, Boshoff C, Fenton TR. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. Cell Rep. 2014;7(6):1833–41.

    Article  CAS  PubMed  Google Scholar 

  36. Cescon DW, Haibe-Kains B, Mak TW. APOBEC3B expression in breast cancer reflects cellular proliferation, while a deletion polymorphism is associated with immune activation. Proc Natl Acad Sci USA. 2015;112(9):2841–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Sieuwerts AM, Willis S, Burns MB, Look MP, Meijer-Van Gelder ME, Schlicker A, et al. Elevated APOBEC3B correlates with poor outcomes for estrogen-receptor-positive breast cancers. Horm Cancer. 2014;5(6):405–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Periyasamy M, Patel H, Lai CF, Nguyen VT, Nevedomskaya E, Harrod A, et al. APOBEC3B-mediated cytidine deamination is required for estrogen receptor action in breast cancer. Cell Rep. 2015;13(1):108–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Xu L, Chang Y, An H, Zhu Y, Yang Y, Xu J. High APOBEC3B expression is a predictor of recurrence in patients with low-risk clear cell renal cell carcinoma. Urol Oncol. 2015;33(8):340e1–18.

    Article  Google Scholar 

  40. Zhang J, Wei W, Jin HC, Ying RC, Zhu AK, Zhang FJ. The roles of APOBEC3B in gastric cancer. Int J Clin Exp Pathol. 2015;8(5):5089–96.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Baba.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosumi, K., Baba, Y., Ishimoto, T. et al. APOBEC3B is an enzymatic source of molecular alterations in esophageal squamous cell carcinoma. Med Oncol 33, 26 (2016). https://doi.org/10.1007/s12032-016-0739-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0739-7

Keywords

Navigation