Skip to main content
Log in

Differences in innate IFNγ and IL-17 responses to Bordetella pertussis between BALB/c and C57BL/6 mice: role of γδT cells, NK cells, and dendritic cells

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Cell-mediated immune responses characterized by the secretion of IFNγ and IL-17 play an important role in the immune response to Bordetella pertussis (B. pertussis). We investigated innate sources of IFNγ and IL-17 upon stimulation of spleen cells from BALB/c (B/c) and C57BL/6 (B6) mice with heat-killed B. pertussis (hkBp). Spleen cells from B/c mice secreted less IFNγ and more IL-17 than those from B6 mice. Innate IFNγ was produced predominantly by NK cells in B/c mice and by CD8 T cells and NK cells in B6 mice. Innate IL-17 was produced primarily by γδT cells in both mouse strains. The secretion of IFNγ was abrogated by anti-IL-12, and the production of IL-17 was abolished by anti-IL-1β- and anti-IL23-neutralizing antibodies. B/c dendritic cells (DCs) stimulated with hkBp secreted significantly more IL-1β and less IL-12 than B6 DCs. Differences in JNK phosphorylation in DCs suggest that this pathway plays a role in the differences between B/c and B6 strains. Mixed cultures of DCs and γδT cells from B/c and B6 showed that cytokines from DCs as well as γδT cell-intrinsic factors contributed to the robust innate IL-17 response in B/c strain. Stimulation of γδT cells with IL-1β and IL-23 was sufficient for IL-17 secretion whereas IL-12 inhibited the secretion of IL-17. A larger fraction of γδT cells were γδT-17 cells in B/c mice than B6 mice. Our data indicate important roles for genetically determined factors in the innate IFNγ and IL-17 responses to B. pertussis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. van Panhuis WG, Grefenstette J, Jung SY, Chok NS, Cross A, Eng H, et al. Contagious diseases in the United States from 1888 to the present. N Engl J Med. 2013;369:2152–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Organization WH. Global and regional immunization profile. 2017. https://www.who.int/immunization/monitoring_surveillance/data/gs_gloprofile.pdf?ua=1/. Accessed 3 July 2017.

  3. Hartzell JD, Blaylock JM. Whooping cough in 2014 and beyond: an update and review. Chest. 2014;146:205–14.

    Article  PubMed  Google Scholar 

  4. Chen Z, He Q. Immune persistence after pertussis vaccination. Hum Vaccin Immunother. 2017;13:744–56.

    Article  PubMed  Google Scholar 

  5. Clark TA. Changing pertussis epidemiology: everything old is new again. J Infect Dis. 2014;209:978–81.

    Article  PubMed  Google Scholar 

  6. Warfel JM, Edwards KM. Pertussis vaccines and the challenge of inducing durable immunity. Curr Opin Immunol. 2015;35:48–54.

    Article  CAS  PubMed  Google Scholar 

  7. Mahon BBP, Sheahan BJ, Griffin F, Murphy G, Mills KHG. Atypical disease after Bordetella pertussis respiratory infection of mice with targeted disruptions of interferon-γ Receptor. J Exp Med. 1997;186:1843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Higgs R, Higgins SC, Ross PJ, Mills KHG. Immunity to the respiratory pathogen Bordetella pertussis. Mucosal Immunol. 2012;5:485–500.

    CAS  PubMed  Google Scholar 

  9. Leef M, Elkins KL, Barbic J, Shahin RD. Protective immunity to Bordetella pertussis requires both B cells and CD4(+) T cells for key functions other than specific antibody production. J Exp Med. 2000;191:1841–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jin W, Dong C. IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect. 2013;2:e60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity. 2004;21:467–76.

    Article  CAS  PubMed  Google Scholar 

  12. Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y. Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol. 2007;178:4466–72.

    Article  CAS  PubMed  Google Scholar 

  13. Hamada S, Umemura M, Shiono T, Tanaka K, Yahagi A, Begum MD, et al. IL-17A Produced by γδT Cells plays a critical role in innate immunity against Listeria monocytogenes infection in the liver. J Immunol. 2008;181:3456–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng P, Liu T, Zhou W-Y, Zhuang Y, Peng L, Zhang J, et al. Role of gamma-delta T cells in host response against Staphylococcus aureus-induced pneumonia. BMC Immunol. 2012;13:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KHG. Interleukin-1 and IL-23 induce innate IL-17 production from γδT cells, amplifying Th17 responses and autoimmunity. Immunity. 2009;31:331–41.

    Article  CAS  PubMed  Google Scholar 

  16. Neves PCC, Santos JR, Tubarão LN, Bonaldo MC, Galler R. Early IFN-gamma production after YF 17D vaccine virus immunization in mice and its association with adaptive immune responses. PLoS One. 2013;8:1–16.

    Google Scholar 

  17. Jiang X, Shen C, Yu H, Karunakaran KP, Brunham RC. Differences in innate immune responses correlate with differences in murine susceptibility to Chlamydia muridarum pulmonary infection. Immunology. 2010;129:556–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Byrne P, McGuirk P, Todryk S, Mills KHG. Depletion of NK cells results in disseminating lethal infection with Bordetella pertussis associated with a reduction of antigen-specific Th1 and enhancement of Th2, but not Tr1 cells. Eur J Immunol. 2004;34:2579–88.

    Article  CAS  PubMed  Google Scholar 

  19. Misiak A, Wilk MM, Raverdeau M, Mills KHG. IL-17−producing innate and pathogen-specific tissue resident memory γδT cells expand in the lungs of Bordetella pertussis − infected mice. J Immunol. 2017;198:363–74.

    Article  CAS  PubMed  Google Scholar 

  20. Mosley Y-YC, Radder JE, Berndt A, HogenEsch H. Genome-wide association mapping of the antibody response to diphtheria-tetanus-acellular pertussis vaccine in mice. J Infect Dis. 2017;215:466–74.

    PubMed  Google Scholar 

  21. Banus HA, Vandebriel RJ, Dormans JAMA, Nagelkerke NJ, Mooi FR, Hoebee B, et al. Host genetics of Bortedella. Microbiology. 2006;74:2596–605.

    CAS  Google Scholar 

  22. Wakeham J, Wang J, Xing Z, Wang JUN. Genetically determined disparate innate and adaptive cell-mediated immune responses to pulmonary Mycobacterium bovis BCG infection in C57BL/6 and BALB/c mice. Infect Immun. 2000;68:6946–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Packiam M, Veit SJ, Anderson DJ, Ingalls RR, Jerse AE. Mouse strain-dependent differences in susceptibility to Neisseria gonorrhoeae infection and induction of innate immune responses. Infect Immun. 2010;78:433–40.

    Article  CAS  PubMed  Google Scholar 

  24. Liu B, Koo GC, Yap EH, Chua KL, Gan Y. Model of differential susceptibility to mucosal Burkholderia pseudomallei infection. Infect Immun. 2002;70:504–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu T, Nishimura H, Matsuguchi T, Yoshikai Y. Differences in interleukin-12 and -15 production by dendritic cells at the early stage of Listeria monocytogenes infection between BALB/c and C57 BL/6 mice. Cell Immunol. 2000;202:31–40.

    Article  CAS  PubMed  Google Scholar 

  26. Pereira VRA, Lorena VMB, Nakazawa M, Luna CF, Silva ED, Ferreira AGP, et al. Humoral and cellular immune responses in BALB/c and C57BL/6 mice immunized with cytoplasmic (CRA) and flagellar (FRA) recombinant repetitive antigens, in acute experimental Trypanosoma cruzi infection. Parasitol Res. 2005;96:154–61.

    Article  PubMed  Google Scholar 

  27. Roque S, Nobrega C, Appelberg R, Correia-Neves M. IL-10 underlies distinct susceptibility of BALB/c and C57BL/6 mice to Mycobacterium avium infection and influences efficacy of antibiotic therapy. J Immunol. 2007;178:8028–35.

    Article  CAS  PubMed  Google Scholar 

  28. Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med. 1989;169:59–72.

    Article  CAS  PubMed  Google Scholar 

  29. Autenrieth IB, Beer M, Bohn E, Kaufmann SHE, Heesemann J. Immune responses to Yersinia enterocolitica in susceptible BALB/c and resistant C57BL/6 mice: an essential role for gamma interferon. Infect Immun. 1994;62:2590–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Watanabe H, Numata K, Ito T, Takagi K, Matsukawa A. Innate immune response in Th1- and Th2-dominant mouse strains. Shock. 2004;22:460–6.

    Article  CAS  PubMed  Google Scholar 

  31. Koo GC, Gan Y-H. The innate interferon gamma response of BALB/c and C57BL/6 mice to in vitro Burkholderia pseudomallei infection. BMC Immunol. 2006;7:19.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Warfel JM, Zimmerman LI, Merkel TJ. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc Natl Acad Sci U S A. 2014;111:787–92.

    Article  CAS  PubMed  Google Scholar 

  33. Warfel JM, Merkel TJ. Bordetella pertussis infection induces a mucosal IL-17 response and long-lived Th17 and Th1 immune memory cells in nonhuman primates. Mucosal Immunol. 2012;6:787–96.

    Article  PubMed  Google Scholar 

  34. Sokolovska A, Hem SL, Hogenesch H. Activation of dendritic cells and induction of CD4 + T cell differentiation by aluminum-containing adjuvants. Vaccine. 2007;25:4575–85.

    Article  CAS  PubMed  Google Scholar 

  35. Raeven RHM, Brummelman J, Pennings JLA, Nijst OEM, Kuipers B, Blok LER, et al. Molecular signatures of the evolving immune response in mice following a Bordetella pertussis infection. PLoS One. 2014;9:19–22.

    Article  Google Scholar 

  36. Higgins SC, Lavelle EC, McCann C, Keogh B, McNeela E, Byrne P, et al. Toll-like receptor 4-mediated innate IL-10 activates antigen-specific regulatory T cells and confers resistance to Bordetella pertussis by inhibiting inflammatory pathology. J Immunol. 2003;171:3119–27.

    Article  CAS  PubMed  Google Scholar 

  37. Mahon BP, Ryan MS, Griffin F, Kingston H, Mills G. Interleukin-12 is produced by macrophages in response to live or killed Bordetella pertussis and enhances the efficacy of an acellular pertussis vaccine by promoting induction of Th1 cells. Infect Immun. 1996;64:5295–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ, et al. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol. 2009;10:427–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barbic J, Leef MF, Burns DL, Shahin RD. Role of gamma interferon in natural clearance of Bordetella pertussis infection. Infect Immun. 1997;65:4904–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dunne A, Ross PJ, Pospisilova E, Masin J, Meaney A, Sutton CE, et al. Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J Immunol. 2010;185:1711–9.

    Article  CAS  PubMed  Google Scholar 

  41. Higgins SC, Jarnicki AG, Lavelle EC, KHG M. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis:role of IL-17-producing T cells. J Immunol. 2006;177:7980–9.

    Article  CAS  PubMed  Google Scholar 

  42. Pinchuk LM, Filipov NM. Differential effects of age on circulating and splenic leukocyte populations in C57BL/6 and BALB/c male mice. Immun Ageing. 2008;5:1.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Veldhoen M, Hirota K, Christensen J, Garra AO, Stockinger B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal diff erentiation of Th17 T cells. J Exp Med. 2009;206:43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Caccamo N, La Mendola C, Orlando V, Meraviglia S, Todaro M, Stassi G, et al. Differentiation, phenotype, and function of interleukin-17–producing human Vγ9Vδ2 T cells. Blood. 2011;118:129–39.

    Article  CAS  PubMed  Google Scholar 

  45. Thäle C, Kiderlen AF. Sources of interferon-gamma (IFN-γ) in early immune response to Listeria monocytogenes. Immunobiology. 2005;210:673–83.

    Article  PubMed  Google Scholar 

  46. Lertmemongkolchai G, Cai G, Hunter CA, Bancroft GJ. Bystander activation of CD8+ T cells contributes to the rapid production of IFN-γ in response to bacterial pathogens. J Immunol. 2001;166:1097–105.

    Article  CAS  PubMed  Google Scholar 

  47. Leav BA, Yoshida M, Rogers K, Cohen S, Godiwala N, Blumberg RS, et al. An early intestinal mucosal source of gamma interferon is associated with resistance to and control of Cryptospondium parvum infection in mice. Infect Immun. 2005;73:8425–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Berg RE, Cordes CJ, Forman J. Contribution of CD8+ T cells to innate immunity: IFN-gamma secretion induced by IL-12 and IL-18. Eur J Immunol. 2002;32:2807–16.

    Article  CAS  PubMed  Google Scholar 

  49. Berg RE, Crossley E, Murray S, Forman J. Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. J Exp Med. 2003;198:1583–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goplen NP, Saxena V, Knudson KM, Schrum AG, Gil D, Daniels MA, et al. IL-12 Signals through the TCR to support CD8 innate immune responses. J Immunol. 2016;197:2434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Berg RE, Forman J. The role of CD8 T cells in innate immunity and in antigen non-specific protection. Curr Opin Immunol. 2006;18:338–43.

    Article  CAS  PubMed  Google Scholar 

  52. D’Orazio SE, Troese MJ, Starnbach MN. Cytosolic localization of Listeria monocytogenes triggers an early IFN-gamma response by CD8+ T cells that correlates with innate resistance to infection. J Immunol. 2006;177:7146–54.

    Article  PubMed  Google Scholar 

  53. Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F. T helper cells plasticity in inflammation. Cytometry A. 2014;85:36–42.

    Article  PubMed  Google Scholar 

  54. Carmody RJ, Ruan Q, Liou H-C, Chen YH. Essential roles of c-Rel in TLR-induced IL-23 p19 gene expression in dendritic cells. J Immunol. 2007;178:186–91.

    Article  CAS  PubMed  Google Scholar 

  55. Liu W, Ouyang X, Yang J, Liu J, Li Q, Gu Y, et al. AP-1 activated by toll-like receptors regulates expression of IL-23 p19. J Biol Chem. 2009;284:24006–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sanjabi S, Hoffmann A, Liou HC, Baltimore D, Smale ST. Selective requirement for c-Rel during IL-12 P40 gene induction in macrophages. Proc Natl Acad Sci U S A. 2000;97:12705–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu C, Gagnidze K, Gemberling JHM, Plevy SE. Characterization of an activation protein-1-binding site in the murine interleukin-12 p40 promoter: demonstration of novel functional elements by a reductionist approach. J Biol Chem. 2001;276:18519–28.

    Article  CAS  PubMed  Google Scholar 

  58. Utsugi M, Dobashi K, Ishizuka T, Endou K, Hamuro J, Murata Y, et al. c-Jun N-terminal kinase negatively regulates lipopolysaccharide-induced IL-12 production in human macrophages: role of mitogen-activated protein kinase in glutathione redox regulation of IL-12 production. J Immunol. 2003;171:628–35.

    Article  CAS  PubMed  Google Scholar 

  59. Jensen KDC, Su X, Shin S, Li L, Youssef S, Yamasaki S, et al. Thymic selection determines γδ T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon γ. Immunity. 2008;29:90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zachariadis O, Cassidy JP, Brady J, Mahon BP. γδ T cells regulate the early inflammatory response to Bordetella pertussis infection in the murine respiratory tract. Infect Immun. 2006;74:1837–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by generous gifts from the BMWLR and the John and Winifred Hayward Foundations. We thank Dr. Tod Merkel (Rockville, MD) for the D420 strain of Bordetella pertussis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harm HogenEsch.

Ethics declarations

The experimental animal studies were performed in strict accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Purdue University Animal Care and Use Committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosley, YY.C., Lu, F. & HogenEsch, H. Differences in innate IFNγ and IL-17 responses to Bordetella pertussis between BALB/c and C57BL/6 mice: role of γδT cells, NK cells, and dendritic cells. Immunol Res 65, 1139–1149 (2017). https://doi.org/10.1007/s12026-017-8957-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-017-8957-4

Keywords

Navigation